
Inexactness Issues in the
Lagrange-Newton-Krylov-Schur Method for
PDE-Constrained optimization

George Biros1 and Omar Ghattas2

1 Courant Institute of Mathematical Sciences, New York University, New York, NY 10012,
USA (biros@cs.nyu.edu).

2 Laboratory for Mechanics, Algorithms, and Computing, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 15213, USA (oghattas@cs.cmu.edu).

Abstract. In this article we present an outline of the Lagrange-Newton-Krylov-Schur (LNKS)
method and we discuss how we can improve its work efficiency by carrying out certain com-
putations inexactly, without compromising convergence. LNKS has been designed for PDE-
constrained optimization problems. It solves the Karush-Kuhn-Tucker optimality conditions
by a Newton-Krylov algorithm. Its key component is a preconditioner based on quasi-Newton
reduced space Sequential Quadratic Programming (QN-RSQP) variants. LNKS combines the
fast-convergence properties of a Newton method with the capability of preconditioned Krylov
methods to solve very large linear systems. Nevertheless, even with good preconditioners,
the solution of an optimization problem has a cost which is several times higher than the
cost of the solution of the underlying PDE problem. To accelerate LNKS, its computational
components are carried out inexactly: premature termination of iterative algorithms, inexact
evaluation of gradients and Jacobians, approximate line searches. Naturally, several issues
arise with respect to the trade-offs between speed and robustness.

1 Introduction

In this article we discuss algorithmic and implementation aspects of large-scale
PDE-constrained optimization methods. The proposed techniques have applications
to a broad category of optimization problems: optimal control, optimal design, and
parameter identification for systems governed by partial differential equations.

We refer to the unknown PDE field quantities as the state variables; the PDE
constraints as the state equations; solution of the PDE constraints as the forward
problem; the inverse, design, or control variables as the decision variables; and the
problem of determining the optimal values of the inverse, design, or control vari-
ables as the optimization problem.

The most popular technique for PDE constrained optimization problems is the
reduced space Sequential Quadratic Programming method (RSQP): at each itera-
tion the linearized PDE-constraints are eliminated and an unconstrained optimiza-
tion problems is solved in the reduced space—the decision variables space [2], [17].
LNKS, which was first introduced by the authors in [3,6,7], employs a family of
methods that use Newton-Krylov algorithms to solve for the Karush-Kuhn-Tucker
optimality conditions, and invokes a preconditioner motivated by reduced space

2 George Biros, Omar Ghattas

ideas. We refer to the (nonlinear) Newton iterations as outer iterations, and use
the term inner to refer to the (linear) Krylov iterations for the Karush-Kuhn-Tucker
(KKT) system that arises at each Newton iteration.

The inner iterative solver and the preconditioner that accelerate the computations
of a Newton step for the KKT optimality conditions are the most basic components
of LNKS. We introduced and analyzed the preconditioner(s) in [4,6]. We also ex-
amined the parallelizability and scalability of the LNKS algorithm. The basic form
of the LNKS algorithm and the Lagrange-Newton solver are analyzed in [7].

Like quasi-Newton RSQP [13], this approach requires just two linearized for-
ward solves per iteration, and in addition exhibits the fast convergence associated
with Newton methods. Moreover, the two forward solves can be approximate (since
they are used within a preconditioner); for example we replace them by an appro-
priate PDE preconditioner. LNKS builds on existing parallel PDE preconditioners
and to an extend it parallelizes and scales as well as the forward solver itself. In
this paper we follow up with a discussion on the inexact components of the LNKS
method—in particular the inexact solves within the QN-RSQP steps used for glob-
alization.

This paper is organized as follows: In Section 2 we present LNKS. In Section
3 we discuss globalization approaches for the outer iteration and we very briefly
present line-search based QN-RSQP methods. In Section 4 we discuss several in-
exact computations within LNKS. We conclude in Section 5 with numerical results
from the application of the algorithm to the optimal control of the steady incom-
pressible Navier-Stokes equations.

Notation conventions: We use boldface characters to denote vector valued func-
tions and vector valued function spaces. We use Roman characters to denote dis-
cretized quantities and italics for their continuous counterparts. For example u will
be the continuous velocity field and u will be its discretization. Greek letters are
overloaded and whether we refer to the discretization or the continuous fields should
be clear from context. We also use (+) as a subscript or superscript to denote vari-
able updates within an iterative algorithm. Finally, quantities with a tilde on the top
indicate that they are results of inexact computations.

2 LNKS Method

Let us consider the constrained optimization problem,

min
x∈RN

f(x) subject to c(x) = 0, (1)

where x ∈ R
N are the optimization variables, f : R

N → R is the objective function
and c : R

N → R
n are the constraints, which in our context are the discretized state

equations; we assume that these are the only constraints1.

1 The methodology can be extended to problems that include additional inequality con-
straints.

Inexact LNKS Methods 3

In order to exploit the structure of the problem we partition x (full space) into
state variables xs ∈ R

n, and decision variables xd ∈ R
m,

x =

{

xs

xd

}

, (2)

so that N = m + n.
The Lagrangian,

L(x, λ) := f(x) + λ
T c(x), (3)

is used to convert the constrained optimization problem to a system of nonlinear
equations. For convenience we introduce the following notation:

A(x) := ∂xc(x) ∈ R
n×N Jacobian matrix of the constraints,

W(x, λ) := ∂xxf(x) +
∑

i λi∂xxci(x) ∈ R
N×N Hessian matrix of the Lagrangian,

g(x) := ∂xf(x) ∈ R
N gradient vector of the objective.

The first order optimality conditions state that at a local minimum the gradient
of the Lagrangian must vanish:

{

∂xL
∂λL

}

(x, λ) =

{

g(x) + A(x)T
λ

c(x)

}

= 0 (or h(q) = 0). (4)

Customarily, these equations are called the Karush-Kuhn-Tucker or KKT optimality
conditions. Points at which the gradient of the Lagrangian vanishes are often called
KKT points2.

A Newton step on the optimality conditions is given by
[

W AT

A 0

] {

px

pλ

}

= −

{

g + AT
λ

c

}

(or Kp = −h), (5)

where px and pλ are the used to update x and λ from current to next iterations. The
KKT optimality conditions (4) define a system of nonlinear equations. The Jaco-
bian K of this system is termed the KKT matrix. Assuming sufficient smoothness,
and that the initial guess is sufficiently close to a solution, updates obtained by (5)
will converge quadratically to the solution [11]. Thus, the forward solves required
for reduced methods can be avoided by remaining in the full space of state and de-
cision variables, since it is the reduction onto the decision space that necessitates
the forward solves. Nevertheless, the full space approach also presents difficulties:
a descent direction is not guaranteed, second derivatives are required, and the KKT
system itself is very difficult to solve. The size of the KKT matrix is more than
twice that of the forward problem, and it is expected to be very ill-conditioned. Ill-
conditioning results not only from the forward problem but also from the different
scales between first and second derivative submatrices. Moreover, the system is in-
definite; mixing negative and positive eigenvalues is known to slow down Krylov
solvers. Therefore, a good preconditioner is essential to make the method efficient.

2 Saddle points and local maxima are also KKT points.

4 George Biros, Omar Ghattas

In LNKS we use a proper Newton method to solve for the KKT optimality con-
ditions. To compute the Newton step we solve the KKT system using an appropri-
ate Krylov method. At the core of the algorithm lies the preconditioner P for the
Krylov method: an inexact version of the QN-RSQP algorithm. An outline of the
LNKS method is given by Algorithm 1.

Algorithm 1
1: Choose x,

�

2: loop
3: Check for convergence
4: Compute c, g,A,W
5: Solve P−1Kp = P−1h (Newton Step)
6: Update x = x + px

7: Update
�

=
�

+ pλ

8: end loop

To derive the preconditioner we rewrite the (5) in a block-partitioned form:

Wss Wsd AT
s

Wds Wdd AT
d

As Ad 0

ps

pd

pλ

= −

gs + AT
s λ

gd + AT
d λ

c

. (6)

RSQP is equivalent to a block-row elimination; given pd, solve the last block of
equations for ps, then solve the first to find pλ, and finally solve the middle one
for the decision variables update direction pd. Therefore RSQP can be written as a
particular block-LU factorization of the KKT matrix:

K =

WssA
−1
s 0 I

WdsA
−1
s I AT

d A−T
s

I 0 0

As Ad 0

0 Wz 0

0 Wsd −WssA
−1
s Ad AT

s

 . (7)

Note that these factors are permutable to block triangular form (this is why we refer
to the factorization as block-LU) and that Wz is the Schur-complement for pd and
is given by

Wz = Wss + AT
d A−T

s WssA
−1
s Ad −AT

d A−T
s Wsd −WdsA

−1
s Ad. (8)

Based on the Schur-type factorization we use the following preconditioner for the
KKT system:

P =

0 0 I

0 I AT
d Ã−T

s

I 0 0

Ãs Ad 0

0 W̃z 0

0 0 ÃT
s

 . (9)

The key components of the preconditioner are Ã−1
s and W̃−1

z , the preconditioners
for the forward problem and the reduced space (or decision space) equations re-

Inexact LNKS Methods 5

spectively. A natural choice for W̃−1
z is a BFGS like method 3 which is commonly

used in QN-RSQP methods. For an analysis of the RSQP-based preconditioner and
more details on the derivations, see [6]. In [4–7] we give theoretical and numerical
evidence that these preconditioners work well.

3 Globalization

Algorithm 1 is only locally convergent. Popular methodologies to globalize New-
ton’s method—that is, allow convergence to a local minimum from any initial guess—
include line search, trust region, and filter algorithms. Details can be found in [23].
Trust region methods have been successfully applied to PDE-constrained optimiza-
tion [17], [19], [20]. Global convergence proofs for these methods can be found in
[8]. Trust region methods are based on the Steihaug modification [24] of the Con-
jugate Gradient (CG) algorithm. However, this approach works only with positive
definite systems. Since the reduced Hessian is assumed to be positive definite CG
can be used. It is not obvious how to use a trust-region method with an indefinite
Krylov solver (which is required for the KKT system) and thus we have opted a line
search algorithm.

The basic component of a line search algorithm is the choice of a merit func-
tion: a scalar function (of x and λ) that monitors the progress of the algorithm.
In contrast with unconstrained optimization, the choice of a merit function is not
straightforward since we are trying to balance optimality with feasibility. The two
most popular choices are the l1-merit and the augmented Lagrangian exact penalty
functions. The l1-merit function is given by

φ(x) := f + ρφ‖c‖1, (10)

and the augmented Lagrangian by

φ(x, λ) := f + cT
λ +

ρφ

2
cT c. (11)

The scalar ρφ is the penalty parameter—a weight chosen to bring the right bal-
ance between the minimization of the objective function and the minimization of
the residuals of the constraints. Both merit functions are exact provided the penalty
parameter is large enough. By exact we mean that if (x∗, λ∗) is a minimizer for
(1), then it is also an minimizer for the merit function. A crucial property of a merit
function is that it should accept unit step lengths close to a solution, and therefore
permit Newton quadratic convergence to be observed. The l1-merit function often
suffers from the “Maratos” effect, that is, sometimes it rejects good steps and slows
down the algorithm. The augmented Lagrangian merit function does not exhibit
such behavior but its drawback is that it requires accurate estimates of the Lagrange
multipliers to perform well. (This is not a problem in LNKS since it provides second

3 The name comes from the inventors of the method, Broyden, Fletcher, Goldfarb, and
Shanno.

6 George Biros, Omar Ghattas

order accurate estimates of the Lagrange multipliers.) Both algorithms are sensitive
to the penalty parameter which must be judiciously chosen; otherwise it can result
in an unbounded merit function, or very slow convergence.

In LNKS we use an Armijo-type line search algorithm. In this class of algo-
rithms a safeguarded backtracking procedure is used to search for a scalar α ∈
[αmin, 1] so that the so-called Armijo criterion

φ(α) ≤ φ(0) + αδApT∇φ(0), (12)

of sufficient descent is satisfied. The algorithm used to compute the search direction
p is left intentionally unspecified. All that matters to ensure global convergence is
the properties of the merit function and the properties of p. If φ is bounded and takes
its minimum at a finite point, and if p is bounded, the safeguarded Armijo search is
guaranteed to converge to a local minimum [22]. The line search algorithm we use
is simple backtracking.

3.1 Continuation

One of the standard assumptions in global convergence proofs is that the Jacobian of
the constraints is non-singular for all optimization iterations. For highly nonlinear
PDEs like the Navier-Stokes equations this is an unrealistic assumption. Even if
the Jacobian is nonsingular, severe ill-conditioning will cause both QN-RSQP and
LNKS algorithms to stall. Indeed, in our numerical experiments (for iterates far from
the solution), difficulties in the line search algorithm where correlated to difficulties
converging the As and K linear solves.

A method to deal with highly nonlinear problems is continuation. This idea (in
its simplest form) works when we can express the nonlinearity of the problem as a
function of a single scalar parameter. Continuation is particularly suitable for PDE-
constrained optimization because it is quite typical for a PDE to have a parameter
that scales the nonlinearities. Examples of such parameters are the Reynolds and
Mach numbers in fluid mechanics, the Peclet number in general convection diffusion
equations, and the Hartman number in magnetohydrodynamics. In problems where
such a parameter cannot be found an alternative method is the pseudo-transient con-
tinuation [18].

Continuation allows uphill steps (unlike monotone line search methods) to be
taken and generates good initial guesses, not only for the optimization variables,
but also for the penalty parameter in the merit function. The most important feature
of the continuation algorithm is that it globalizes trivially4. If the continuation step
brings the next iterate outside the attraction basin of the Newton method then we
can simply reduce the continuation step size. In principle, the method can be made
to work without incorporating any other globalization strategy. Nevertheless, taking
a large number of continuation steps can significantly slow down the algorithm.
Therefore additional globalization strategies are necessary.

4 This is true only when all iterates on the continuation path are far from turning and bifur-
cation points.

Inexact LNKS Methods 7

3.2 Combining QN-RSQP with LNKS

Quasi-Newton methods are well known for their robustness. Since LNKS already
uses the reduced space structure for preconditioning it is natural to ask whether QN-
RSQP can be utilized to enhance the robustness of the overall algorithm. Global
convergence proofs require the reduced Hessian, Wz , to be strictly positive definite
If Wz is positive definite (and assuming the system (5) is solved exactly), then the
resulting step p satisfies the descent criterion. This is where quasi-Newton methods
have an advantage over Newton methods. For example, by using a BFGS approxi-
mation, W̃z, positive definiteness can be guaranteed. LNKS does maintain a BFGS
approximation—not for driving the outer iteration but for preconditioning purposes.
Therefore, the remedy for an indefinite reduced Hessian is simple: if a computed
search direction fails to satisfy the line search algorithm, we discard it, and we re-
place it with a search direction computed by QN-RSQP. For this reason, even if
we use a different preconditioner for the reduced Hessian, we do maintain a BFGS
approximation of Wz in order to used it with QN-RSQP.

As we saw, (7), reduced space methods can be formally derived by a linear
elimination of the state space step ps. The resulting unconstrained optimization
problem has a gradient that includes second derivatives. These second derivative
terms are dropped from the right hand sides of the decision and adjoint steps, at
the expense of a reduction from one-step to two-step superlinear convergence [2].
An important advantage of this quasi-Newton method is that only two linearized

Algorithm 2 Quasi-Newton RSQP

1: Choose xs,xd,W̃z

2: loop
3: Evaluate c, g, A

4: AT
s

�
= −gs solve for

�
(Adjoint Step)

5: gz = gd + AT
d

�

6: Update W̃z (Quasi-Newton approximation)
7: if ‖gz‖ ≤ tol and ‖c‖ ≤ tol then
8: Converged
9: end if
10: W̃zpd = −gz solve for pd (Decision step)
11: Asps = −(Adpd + c) solve for ps (State step)
12: x+ = x + px

13: end loop

forward problems need to be solved at each iteration, as opposed to the m needed
by N-RSQP for constructing A−1

s Ad in Wz [13].
Let us review how QN-RSQP is used in combination with the l1 and augmented

Lagrangian penalty functions. For the l1-penalty function we get

∇φT px = gT px − ρφ‖c‖1 = −gT
z W̃−1

z gz − λ
T
c − ρφ‖c‖1.

8 George Biros, Omar Ghattas

If W̃−1
z is positive definite then the first term is always positive and we can choose

ρφ by making the remaining terms positive. By setting

ρφ = ‖λ‖∞ + δ, δ > 0, (13)

we obtain a descent direction.
Similarly for the augmented-Lagrangian we get

∇φT p = (g + AT
λ + ρφA

T c)T px + pλ,

= −gT
z W̃−1

z gz − λ
T (c + AT px) + cT Apx + cT pλ,

= −gT
z W̃−1

z gz − ρφc
T c + cT pλ.

If we assume that W̃−1
z is strictly positive definite and choose

ρφ ≥
cT pλ

cT c
+ δ, δ > 0, (14)

then a descent direction is guaranteed. In our quasi-Newton formulations we assume
that we have second derivatives. In this case,

pλ = (∂xλ)px = −A−T
s

[

Wss Wsd

]

px ≈ −Ã−T
s

[

Wss Wsd

]

px. (15)

QN-RSQP has been very efficiently parallelized for moderate numbers of de-
cision variables [21]. However the need of exact forward solves greatly increases
the cost of LNKS in case we need to use QN-RSQP for globalization. However,
QN-RSQP can be made much more efficient by carrying the state and adjoint solves
inexactly.

4 Inexact computations within LNKS

In very large-scale computations inexactness is a powerful way to accelerate com-
putations. In addition, it is often the case that inexactness robustifies algorithms (e.g.
by dumping Newton steps). In LNKS both outer and inner iterations are performed
inexactly. We use inexact Lagrange-Newton solves within continuation loops, in-
exact Krylov-Schur solves to compute the Newton direction, and inexact reduced
Hessian in the KKT preconditioner and the QN-RSQP globalization. The various
types of inexactness influence the algorithm in two basic ways: global convergence
to a KKT point and local convergence rates. Analysis is required not only to pro-
vide theoretical guarantees for the robustness of the proposed algorithms, but also
to suggest choices for truncation tolerances.

4.1 Inexact Newton’s method

Before we discuss inexact Newton’s method in the context of LNKS, we briefly
summarize a few results for a general nonlinear system of equations. Assume we

Inexact LNKS Methods 9

want to solve h(q) = 0. Further assume the following: (1) h and K := ∂qh are suf-
ficiently smooth in a neighborhood of a solution q∗; (2) at each iteration an inexact
Newton method computes a step p that satisfies

‖Kp + h‖ ≤ ηN‖h‖, (16)

where ηN is often called the forcing term. It can be shown that if ηN < 1 then
q → q∗ linearly; if ηN → 0 then q → q∗ superlinearly; and if ηN = O(‖h‖) then
we recover the quadratic convergence rates of a Newton method. The forcing term
is usually given by

ηN =
‖h(+) − h −Kp‖

‖h‖
. (17)

For other alternative selections for ηN and details in inexact Newton method look at
[10] and the references therein.

The extension of inexact methods to optimization is immediate, especially for
unconstrained optimization. In [17] a global analysis is provided for a trust region
RSQP-based algorithm. Close to a KKT point the theory for Newton’s method ap-
plies and one can use the analysis presented in [9] to show that the inexact version of
the LNKS algorithm converges. However, the line search we are using is not based
on the residual of the KKT equations but instead on the merit function discussed in
the previous session. That means that an inexact step that simply reduces ‖h‖ may
not satisfy the merit function criteria. In [7] we show that for points which are close
enough to the solution inexactness does not interfere with the line search.

In this article we extend our discussion to the inexact QN-RSQP algorithm since,
especially in the absence of a continuation scheme QN-RSQP is a crucial component
of the LNKS method. In the analysis that follows we compare the inexact compu-
tation with an exact one. We assume that we have chosen a penalty parameter that
gives sufficient decrease (based on the exact steps), and we establish conditions for
the inexact computation so that this sufficient decrease is not compromised.

In the presence of inexactness the QN-RSQP steps become

AT
s λ̃ + gs = rz ,

g̃z = gd + AT
d λ̃,

W̃zp̃z = −g̃z,
Asp̃s = −(Adp̃z + c) + rc,

p̃d = p̃z.

We have introduced two vectors, rz and rc to account for the inexactness in the
adjoint and forward solves. The following equations give the Lagrange multipliers,
reduced gradient, state and control steps for the exact (left column) and the inexact
case (right column).

λ = −A−T
s gs, λ̃ = λ + A−T

s rz,

gz = gd −AT
d A−T

s gs, g̃z = gz + AT
d A−T

s rz,

pd = −W̃−1
z gz, p̃d = pd − W̃−1

z AT
d A−T

s rz,

ps = A−1
s AdW̃

−1
z gz −A−1

s c, p̃s = ps + A−1
s AdW̃

−1
z AT

d A−T
s rz + A−1

s rc.

10 George Biros, Omar Ghattas

Let us define the following constants : κ1 := max(‖W̃−1
z ‖), κ2 := max(‖A−1

s Ad‖),
κ3 := min(σmin(W̃−1

z)), and κ4 := max(‖A−1
s ‖); σ denotes singular values and

the min, max operations are across optimization iterations. We assume that these
quantities are uniformly bounded.

4.2 l1-merit function.

The directional derivative of the merit function is given by

∇φT px = ∇φT px + gT
s (A−1

s AdW̃
−1

z AT
d A−T

s rz + A−1
s rc) − gT

d W̃−1
z AT

d A−T
s rz ,

= ∇φT px + (AT
d A−T

s gs − gd)
T W̃−1

z AT
d A−T

s rz + (−A−T
s gs)

T rc,

= −gT
z W̃−1

z gz − λ
T c − ρφ‖c‖1 − gT

z W̃−1
z AT

d A−T
s rz − λ

T rc.

To ensure that ∇φT px < 0 we can set,

−gT
z W̃−1

z gz − gT
z W̃−1

z AT
d A−T

s rz < 0,

−λ
T c − λ

T rc − ρφ‖c‖1 < 0.
(18)

and therefore if we choose
‖rz‖ <

κ3

κ1κ2
‖gz‖, (19)

we satisfy the first inequality in (18).
If we assume that the penalty parameter is given by (13) then

−λ
T c − λ

T rc − ρφ‖c‖1 < 0,

−λ
T c − λ

T rc − ‖λ‖∞‖c‖1 − δ‖c‖1 <
‖λ‖∞‖c‖1 + ‖λ‖∞‖rc‖1 − ‖λ‖∞‖c‖1 − δ‖c‖1.

If we choose
‖rc‖1 <

1

2

δ

‖λ‖∞
‖c‖1, (20)

then5

−λ
T c − λ

T rc − ρφ‖c‖1 < −
1

2
δ‖c‖1.

For each iterate therefore we compute sufficient descent without having to increase
the penalty parameter.

4.3 Augmented Lagrangian

For the approximate QN-RSQP the directional derivative of the augmented La-
grangian merit function becomes

∇φT p̃ = p̃T
x (g + AT

λ̃ + ρφA
T c) + cT p̃λ,

= −gT
z W̃−1

z gz − ρφc
T c + eT (g + AT

λ̃ + ρφA
T c) + cT p̃λ+

+ pT
x AT eλ + eT AT eλ, (21)

5 In our implementation we use ‖rc‖1 < 1

2
δ/(‖

�
‖∞ + 1)‖c‖1 and the right hand side

becomes δ/2(1/(1/‖
�
‖∞ + 1) − 2)‖c‖1 . By noticing that 0 < 1

1/‖
�
‖∞+1

< 1 we get
the sufficient descent condition.

Inexact LNKS Methods 11

where,

es := A−1
s AdW̃

−1
z AT

d A−T
s rz + A−1

s rc,

ed := −W̃−1
z AT

d A−T
s rz,

eλ := A−T
s rz .

Now we examine the different terms of the gradient of the Augmented Lagrangian
function. We use g + AT

λ = {0 gz}
T and (21) becomes

∇φT p̃ = −gT
z W̃−1

z gz − ρφc
T c+

+ gT
z ed + pT

x AT eλ + eT AT eλ + ρφe
T AT c + cT p̃λ. (22)

It is easy to check that the terms in the right hand of (22) simplify to:

gT
z ed = −rT

z A−1
s c,

pT
x AT eλ = −rT

z A−1
s c,

ρφe
T AT c = ρφc

T rc,

eT AT eλ = rT
z A−1

s rc.

Thus

∇φT p̃ = − gT
z W̃−1

z gz − ρφc
T c + ρφc

T rc−

− rT
z (A−1

s c + A−1
s AdW̃

−1
z gz) + cT p̃λ + rT

z A−1
s rc. (23)

In the following we assume that cT p̃λ is absorbed in the penalty parameter ρφ.
We use the following inequality

gT
z W̃−1

z gz + ρφc
T c ≤ 2 max(κ3‖gz‖

2, ρφ‖c‖
2) =: γ.

If we choose

rT
z (A−1

s c + A−1
s AdW̃

−1
z gz) < η

1

2
γ, 0 < η < 1

then

‖rz‖ <
η

2

max(κ3‖gz‖
2, ρφ‖c‖

2)

max(κ4‖c‖, κ2κ3‖gz‖)
. (24)

Similarly if we choose

rT
c (ρφ‖c‖ + κ4rz) < η

1

2
γ, 0 < η < 1

then

‖rc‖ <
η

2

max(κ3‖gz‖
2, ρφ‖c‖

2)

max(ρφ‖c‖, κ4‖rz‖)
. (25)

12 George Biros, Omar Ghattas

By insisting on (24) and (25) are satisfied, we guarantee a descent direction
without a penalty parameter significantly larger of the exact case. Of course these
relations are not implemented in this form since we do not know ‖gz‖. Instead of
‖gz‖ we use the reduced gradient norm from the previous iteration—scaled by a
standard inexact Newton forcing parameter ηN computed from

η+
N =

‖g̃+
z − g̃z − αp̃d‖

‖g̃z‖

at the end of each SQP step.
Notice that the analysis is different than the case of the l1-merit function. In the

latter the errors rz and rc have been compared to −gT
z W̃−1

z gz and ρφc
T c respec-

tively, whereas in the augmented Lagrangian both errors are compared to 1
2γ. This

allows a balance between feasibility and optimality. If, for example, we start very
close to a feasible point but far from the optimum, an inexact Newton’s criterion
based only on the residual of the constraints (as in (20)) we will oversolve, since far
from the optimum we do not need the constraints to be satisfied. Of course it is very
easy to extend the analysis for the augmented Lagrangian to the l1-merit function.

4.4 The globalized inexact LNKS method

We summarize by giving a high-level description of implementation details and
heuristics we are using in LNKS (Alg. 3). We use he following notation: q =
{x λ}T ; φ(0) := φ(q), h(0) := h(q), φ(α) := φ(q + αp), h(α) := h(q + αp).

The algorithm uses a three-level iteration. In the outer iteration the continua-
tion parameter number is gradually increased until the target number is reached.The
middle iterations correspond to Lagrange-Newton linearizations of the optimality
system for a fixed continuation number. Finally, the inner iteration consists of two
core branches: the computation of a Newton direction and the computation of the
search direction with QN-RSQP. The default branch is the Newton step. If this step
fails to satisfy the line search algorithm conditions then we switch to QN-RSQP. If
QN-RSQP fails too, then we reduce the continuation parameter Re and we return to
the outer loop.

Linear solves at steps 8, 16 and 17 are performed inexactly. In step 8 we follow
[10] in choosing the forcing term. In steps 16, and 17 the forcing term is based on
the formulas developed in Section 4.3.

In step 6 we use the adjoint variables to update the reduced gradient. This is
equivalent to gz = gd − AT

d A−T
s gs, if λ is computed by solving exactly AT

s λ +
gs = 0. When λ is taken from LNKS, it includes second order terms (which re-
duce to zero as we approach the solution), and when λ is taken from QN-RSQP it
also introduces extra error since we never solve the linear systems exactly. In our
numerical experiments this approximation has not caused problems.

We allow for non-monotone line searches. If the LNKS step is rejected by the
merit function line search we do not switch immediately to QN-RSQP. Instead we
do a line search (step 12) on the KKT residual (as if we were treating the KKT

Inexact LNKS Methods 13

Algorithm 3 Globalized LNKS
1: Choose xs, xd, ρφ, t, δA, set Re = Restart , tol = tol0

2: AT
s

�
+ gs ≈ 0 solve inexactly for

�

3: while Re 6= Re target do
4: loop
5: Evaluate f, c, g, A, W

6: gz = gd + AT
d

�

7: Check convergence: ‖g + AT �
‖ ≤ tol and ‖c‖ ≤ tol

8: P−1Kp + P−1h ≈ 0 solve inexactly for p

9: Compute ρφ such that ∇φT (0)p ≤ 0
10: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)p)
11: if Line search failed then
12: Compute α s.t. ‖h(α)‖ < t‖h(0)‖
13: end if
14: if Line search failed then
15: W̃zpd = −gz solve inexactly for pd

16: Asps + Adpd + c ≈ 0 solve inexactly for ps

17: AT
s

�
+ + gs ≈ 0 solve inexactly for

�
+

18: Compute α s.t. φ(α) ≤ φ(0) + δAα(∇φT (0)p)
19: if Line search failed then
20: Reduce Re and go to step 5.
21: end if
22: end if
23:

�
+ =

�
+ pλ (only for LNKS step)

24: x+ = x + px

25: end loop
26: Re = Re + ∆Re

27: Tighten tol

28: end while

conditions as nonlinear equations) and if the step is accepted we use it to update
the variables for the next iteration. However, we do store the iterate and the merit
function gradient, and we insist that some step satisfies the conditions of the merit
line search (evaluated at the failure point) after a fixed number of iterations. Oth-
erwise, we switch to QN-RSQP. This heuristic has been very successful. Typically,
we permit two steps before we demand reduction of the merit function.

We use various heuristics to bound the penalty parameter and if possible reduce
it. A new penalty parameter ρ+

φ is computed using the LNKS step and formula
(14). If ρ+

φ > 4ρφ we update the penalty parameter and we switch to QN-RSQP. If
ρ+

φ < ρφ/4 we reduce the penalty parameter and set ρ+
φ = 0.5ρφ. We also reduce

the penalty parameter after successful steps in the KKT residual.
We use the BFGS method for the quasi-Newton approximation of the reduced

Hessian. To precondition Wz we use either BFGS or a matrix-free method we in-
troduced in [6]. This preconditioner, which requires the action of Wz on a vector,
can be also used as a driver for the reduced space globalization step. Although we
have the luxury of second derivatives, the reduced Hessian is very expensive to be

14 George Biros, Omar Ghattas

compute exactly. Instead we can use an approximate reduced Hessian. It is given by

W̃z = Wdd + Ã−T
s AT

d WssÃ
−1
s Ad −WdsÃ

−1
s Ad −AT

d Ã−T
s Wsd, (26)

and Ã−1
s is the preconditioner to the forward problem. We employ a Lanczos pro-

cess to estimate the lower and upper eigenvalues of W̃z . In case of a negative eigen-
value (curvature) we can use a modified reduced Hessian, µI + W̃z, where the pa-
rameter µ is chosen to shift the spectrum to the positive real axis.

5 Application to Viscous Flows

In this section we present some indicative results for the performance of the al-
gorithm. The forward problem is a viscous flow around a cylinder. A survey and
articles on flow control can be found in [15]. More on the Navier-Stokes equations
can be found in [14,16]. The objective function to be minimized is the dissipation
functional. The cylinder is anchored inside a rectangular duct, much like a numeri-
cal wind tunnel. A quadratic velocity profile is used as an inflow Dirichlet condition
and we prescribe a traction-free outflow. The decision variables are defined to be the
velocities on the downstream portion of the cylinder surface. We use the velocity-
pressure (u, p) form of the incompressible steady state Navier-Stokes equations.
For a dissipation minimization problem, in which the decision variables are Dirich-
let velocity conditions on part of the boundary, a possible objective function is given
by

J (u, d) :=
ν

2
a(u, u) +

ρ

2
(d, d)Γd

.

For this problem the strong form of the (infinite dimensional) KKT optimality con-
ditions is given by the forward problem

−ν∇ · (∇u + ∇u
T) + (∇u)u + ∇p = b in Ω,

∇ · u = 0 in Ω,
u = ug on Γu,
u = ud on Γd,

−pn + ν(∇u + ∇u
T)n = 0 on ΓN ,

(27)

the adjoint problem

−ν∇ · (∇λ + ∇λ
T) + (∇u)T

λ − (∇λ)u + ∇µ = ν∇ · (∇u + ∇u
T) in Ω,

∇ · λ = 0 in Ω,

λ = 0 on Γu, (28)
λ = 0 on Γd,

−µn + ν(∇λ + ∇λ
T)n + (u · n)λ = −ν(∇u + ∇u

T)n on ΓN ,

and the decision or (reduced space) problem

ν(∇λ + ∇λ
T)n + ν(∇u + ∇u

T)n − ρd = 0 on Γd. (29)

Inexact LNKS Methods 15

Here ν = 1/Re and the decision variables are the velocities ud on Γd; λ are the
adjoint velocities and µ are the adjoint pressures. For a forward solve we need not
distinguish between Γd and Γu. In the optimization problem however, ud is not
known.

We discretize by the Galerkin finite element method, using tetrahedral Taylor-
Hood elements (quadratic velocities, linear pressures). Our software is built on top
of the PETSc library [1] and we use PETSc’s block-Jacobi preconditioners with
local ILU(0) for the domain decomposition approximation of the forward problem
inverse. For the Krylov solves of the forward and the adjoint problems we use quasi-
minimum residual method (QMR) [12] and for the KKT Krylov solves we use a
symmetric variant of QMR.

(a) (b)

(c) (d)

Fig. 1. This is an example of a PDE-constrained optimal control problem. The constraints
are the steady incompressible Navier-Stokes equations; they model a viscous flow around
a cylinder. The objective is to minimize the energy dissipation. The controls are injection
points (velocity Dirichlet boundary conditions) on the downstream portion of the cylinder
surface. The left images depicts the uncontrolled flow at Reynolds numbers 20 and 40. The
right images depicts the controlled flow after the optimizer was switched on (same Reynolds
number). Injecting fluid entirely eliminates recirculation at the wake of the cylinder, thus
minimizing dissipation. This numerical experiment took place on 256 processors on a Cray
T3E-900 at the Pittsburgh Supercomputing Center.

16 George Biros, Omar Ghattas

Figure 1 illustrates the optimization results for different Reynolds numbers.
LNKS manages to eliminate the recirculation region in the downstream region of
the cylinder. This is achieved by injecting fluid on the downstream portion of the
cylinder. We observed a tenfold relative reduction on the dissipation functional.

Table 1 shows results for 32, 64, and 128 processors of a T3E-900 for a roughly
doubling of problem size. We compare QN-RSQP (exact solves), with LNKS (exact
solves) and IN-LNKS (inexact solves). Continuation was used for the initial guess

Table 1. The table shows results for 32, 64, and 128 processors of a Cray T3E for a roughly
doubling of problem size. Results for the QN-RSQP and LNKS algorithms are presented.
(QN-RSQP) is quasi-Newton reduced-space SQP; in (LNKS) we terminate the KKT Krylov
iterations when the Euclidean norm of residual is less than 0.9×10−7; in (IN-LNKS) we use
a inexact Newton method; (N or QN iter) is the number of Newton or quasi-Newton steps;
(KKT iter) is the number of inner iterations averaged across the outer iterations; (time) is
wall-clock time in hours on a T3E-900. Continuation was used for Re = 60.

Re = 30

states
controls method N or QN iter KKT iter time

117,048 QN-RSQP 161 — 32.1
2,925 LNKS 6 1,367 5,7

(32 procs) IN-LNKS 11 163 1.4
389,440 QN-RSQP 189 — 46.3
6,549 LNKS 6 2,153 15.7

(64 procs) IN-LNKS 13 238 3.8
615,981 QN-RSQP 204 — 53.1
8,901 LNKS 6 3,583 16.8

(128 procs) IN-LNKS 12 379 4.1

Re = 60

states
controls preconditioning Newton iter average KKT iter time (hours)

117,048 QN-RSQP 168 — 33.4
2,925 LNKS 7 1,391 6,8

(32 procs) IN-LNKS 11 169 1.5
389,440 QN-RSQP 194 — 49.1
6,549 LNKS 7 2,228 18.9

(64 procs) IN-LNKS 15 256 4.8
615,981 QN-RSQP 211 — 57.3
8,901 LNKS 8 3,610 13.5

(128 procs) IN-LNKS 16 383 5.1

at Reynolds number 60 by using the solution from Reynolds number 30 as the initial
guess. The reduced Hessian preconditioner is a combination of the BFGS and 2-step

Inexact LNKS Methods 17

preconditioners. For this problem, QN-RSQP successfully converged but only after
a quite significant amount of time6. LNKS does much better—4 to 5 times faster
than QN-RSQP. The most notable finding in Table 1 is the dramatic acceleration of
the LNKS algorithm which is achieved by using IN-LNKS—the inexact version of
the Newton method. The inexactness did not interfere at any point with the merit
function and in all cases we observed quadratic convergence. For both Reynolds
number 30 and 60 IN-LNKS runs more than 10 times faster than QN-RSQP.

In Table 2 we compare LNKS with the inexact version of the QN-RSQP method.
In these numerical tests we have chosen Reynolds numbers in which the steady state
model of the flow is not correct physically—we did it to increase the nonlinearity of
the problem. We use BFGS both as a driver and as a preconditioner.

We look at the number of Newton or quasi-Newton steps and on the effect of
the inexact computations. As we can see in this example the number of outer itera-
tions depends very mildly on the nonlinearity of the problem. The inexact versions
are much faster; 30% for the QN-RSQP and more than 50% for the full space ap-
proach. In the third column we measure the success of the line search algorithms.
Its meaning is overloaded; for the IN-QN-RSQP method it indicates the number
of times the merit function penalty parameter was increased twofold the maximum
penalty parameter during the exact QN-RSQP solves; for the LNKS method it in-
dicates failures on the merit function line search. If the latter happens we switch to
a line search on the KKT residual. The fifth column indicates the number of times
that this approach failed (and as a result we had to backtrack the outer iteration and
switch to a quasi-Newton step). For this numerical experiment we observe that the
number of excessive penalty parameter increments within the inexact QN-RSQP is
relatively small. Overall the method performs much better than the exact case.

For the LNKS steps we see that in the case of exact solves switching to a line
search on the KKT residual does not help (in fact it slows down the algorithm). On
the contrary for the inexact solves this approach helps and the relatively expensive
quasi-Newton steps are avoided.

6 Conclusions

We presented the basic algorithmic components of the LNKS method and we ap-
plied to the optimal control of a viscous flow around a cylinder. Our tests indicate
that LNKS is a robust and scalable algorithm for PDE-constrained optimization.
The Lagrange-Newton method exhibited the well known mesh-independence con-
vergence properties—combined with the inner Krylov-Schur iteration results in very
fast solvers.

The numerical experiments on the effects inexactness are of limited scope—
nevertheless the give an indication of the effectiveness of inexact computations in
reducing wall-clock time. Undoubtedly the external cylinder flow problem is highly

6 Here we used the l1-merit function with second order correction line search. In past ex-
periments we used standard l1 and after 48 hours QN-RSQP was terminated with just two
orders of magnitude reduction in the reduced gradient.

18 George Biros, Omar Ghattas

Table 2. This table shows results for three different Reynolds numbers for the 117,048 states
problem on 32 processors. Results for the QN-RSQP and LNKS algorithms are presented.
(QN-RSQP) is the quasi-Newton reduced-space SQP; (IN-QN-RSQP) is the inexact reduced
space method; in (LNKS) we terminate the KKT Krylov iterations when the Euclidean norm
of residual is less than 0.9 × 10−7; in (IN-LNKS) we use a truncated Newton method; (itr)
is the number for Newton (or quasi-Newton) steps; (ls failed): for IN-QN-RSQP it indicates
number of excessive increase on ρφ the merit function penalty parameter, and for LNKS
it indicates the number of unsuccessful augmented Lagrangian line search attempts; (KKT
failed) indicates the number of iterations in which the KKT steps had to be rejected; (time)
is wall-clock time in hours on a T3E-900. In this example we did not employ continuation.

Reynolds method N or QN itr ls failed KKT failed time
90 QN-RSQP 181 - - 35.4

IN-QN-RSQP 184 5 - 22.1
LNKS 9 1 1 7.2

IN-LNKS 14 4 0 1.5
120 QN-RSQP 185 - - 36.1

IN-QN-RSQP 192 5 - 23.2
LNKS 10 2 2 8.1

IN-LNKS 15 6 1 2.3
150 QN-RSQP 184 - - 36.3

IN-QN-RSQP 194 6 - 25.1
LNKS 11 2 2 8.6

IN-LNKS 15 6 2 2.9

Inexact LNKS Methods 19

nonlinear. The augmented Lagrangian globalization performed robustly and we did
not have problems converging the equations. The results reveal at least an order
of magnitude improvement in time over popular quasi-Newton methods, rendering
tractable some problems that were out of reach previously. Indeed, the optimum is
often found in a small multiple of the cost of a single simulation.

References

1. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc
home page. http://www.mcs.anl.gov/petsc, 1999.

2. Lorenz T. Biegler, Jorge Nocedal, and Claudia Schmid. A reduced Hessian method for
large-scale constrained optimization. SIAM Journal on Optimization, 5:314–347, 1995.

3. George Biros. Parallel Algorithms for PDE-Constrained Optimization and Application
to Optimal Control of Viscous Flows. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, August 2000.

4. George Biros and Omar Ghattas. Parallel Newton-Krylov algorithms for PDE-
constrained optimization. In Proceedings of SC99, The SCxy Conference series, Port-
land, Oregon, November 1999. ACM/IEEE.

5. George Biros and Omar Ghattas. Parallel preconditioners for KKT systems arising in
optimal control of viscous incompressible flows. In D. E. Keyes, A. Ecer, J. Periaux,
and N. Satofuka, editors, Parallel Computational Fluid Dynamics 1999. North-Holland,
1999.

6. George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for
PDE-constrained optimization. Part I: The Krylov-Schur solver. Technical report, Labo-
ratory for Mechanics, Algorithms, and Computing, Carnegie Mellon University, 2000.

7. George Biros and Omar Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for
PDE-constrained optimization. Part II: The Lagrange Newton solver, and its application
to optimal control of steady viscous flows. Technical report, Laboratory for Mechanics,
Algorithms, and Computing, Carnegie Mellon University, 2000.

8. John Dennis E., Jr., Mahmoud El-Alem, and Maria C. Magiel. A global convergence
theory for general trust-region-based algorithms for equality constrained optimization.
SIAM Journal on Optimization, 7(1):177–207, 1997.

9. Stanley C. Eisenstat and Homer F. Walker. Globally convergent inexact Newton methods.
SIAM Journal on Optimization, 4(2):393–422, 1994.

10. Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact
Newton method. SIAM Journal on Scientific Computing, 17(1):16–32, 1996.

11. Roger Fletcher. Practical Methods of Optimization. John Wiley and Sons, second edi-
tion, 1987.

12. Roland W. Freund and Noël M. Nachtigal. An implementation of the QMR method based
on coupled two-term recurrences. SIAM Journal of Scientific Computing, 15(2):313–337,
March 1994.

13. Omar Ghattas and Jai-Hyeong Bark. Optimal control of two- and three-dimensional
incompressible Navier-Stokes flows. Journal of Computational Physics, 136:231–244,
1997.

14. Max D. Gunzburger. Finite Element for Viscous Incompressible Flows. Academic Press,
1989.

15. Max D. Gunzburger, editor. Flow Control, volume 68 of IMA Math. Appl. Springer-
Verlag, New York, 1995.

20 George Biros, Omar Ghattas

16. Max D. Gunzburger and Roy A. Nicolaides, editors. Incompressible Computational
Fluid Dynamics. Cambridge University Press, 1993.

17. Matthias Heinkenschloss and Luis N. Vicente. Analysis of inexact trust-region SQP
algorithms. Technical Report TR99-18, Rice University, Department of Computational
and Applied Mathematics, 1999.

18. C. T. Kelley and David E. Keyes. Convergence analysis of pseudo-transient continuation.
SIAM Journal on Numerical Analysis, 35:508–523, 1998.

19. C.T. Kelley and Ekkehard W. Sachs. Truncated Newton methods for optimization with
inaccurate functions and gradients. SIAM Journal on Optimization, 10(1):43–55, 1999.

20. F. Leibritz and E. W. Sachs. Inexact SQP interior point methods and large scale optimal
control problems. SIAM Journal on Control and Optimization, 38(1):272–293, 1999.

21. Ivan Malčević. Large-scale unstructured mesh shape optimization on parallel computers.
Master’s thesis, Carnegie Mellon University, 1997.

22. Stephen G. Nash and Ariela Sofer. Linear and Nonlinear Programming. McGraw-Hill,
1996.

23. Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.
24. T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.

SIAM Journal on Numerical Analysis, 20:626–637, 1983.

