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Abstract. Kernel-based methods are a powerful tool in a variety of machine learning and
computational statistics methods. A key bottleneck in these methods is computations involving the
kernel matrix, which scales quadratically with the problem size. Previously, we introduced ASKIT,
an efficient, scalable, kernel-independent method for approximately evaluating kernel matrix-vector
products. ASKIT is based on a novel, randomized method for efficiently factoring off-diagonal blocks
of the kernel matrix using approximate nearest neighbor information. In this context, ASKIT can
be viewed as an algebraic fast multipole method for arbitrary dimensions.

In this paper, we introduce our open-source implementation of ASKIT. Features of our ASKIT
library include: linear dependence on the input dimension of the data, the ability to approximate
kernel functions with no prior information on the kernel, and scalability to tens of thousands of
compute cores and data with billions of points or hundreds of dimensions. We also introduce some
new extensions and improvements of ASKIT, included in our library. We introduce a new method for
adaptively selecting approximation ranks and correctly partition the nearest neighbor information,
both of which improve the performance of ASKIT over our previous implementation.

We describe the ASKIT algorithm in detail, and collect and summarize our previous theoretical
complexity and error bounds in one place. We present a brief selection of experimental results
illustrating the accuracy and scalability of ASKIT. We then provide some details and guidance for
users of ASKIT.

1. Introduction. In this paper, we introduce a new, open-source library im-
plementing the ASKIT algorithm for fast kernel summations. ASKIT (Approximate
Skeletonization Kernel Independent Treecode) is a novel N-body code for arbitrary
dimension, general kernel summations, previously described in [25-28].

A kernel summation is the following problem: given a set of N data points z; € R?,
a real-valued function KC(-) of pairs of data points, and a charge vector w € RV, we
compute the NV potentials:

(1.1) u(i) =Y K(wi,z;)w;.

Equivalently, one can view this as a matrix-vector product v = Kw, where K is an
N x N matrix of kernel interactions with entries K;; = K(z;, ;). Clearly, evaluating
this product directly will require O(N?) kernel evaluations. Our task is to compute
approximate sums in O(N log N) (or O(N)) work.

Motivation. Kernel summations are a fundamental calculation in the solution of
partial differential equations [13]. Furthermore, they frequently appear in kernel-based
machine learning methods for classification, regression, and density estimation [10,36];
spatial statistics [4]; and Gaussian process modeling [31], among other applications.
In particular, kernels are a popular way to transform data non-linearly before applying
a linear learning method [17].

Data analysis problems typically involve both large number of points N and
dimension d (the number of features). Furthermore, they require a variety of kernel
functions K, including kernels that are learned from the data [19] or kernels using
variable bandwidths [34]. Therefore, we require a method that scales with N and d
and that is kernel independent.
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Treecodes (and Fast Multipole Methods) are a class of efficient methods for ker-
nel summation problems. However, these were generally developed for problems in
computational physics, where d is typically small (< 3). These methods tend to
scale exponentially with d [12,33,40], making them ineffective for high-dimensional
problems. Furthermore, many of these methods use series expansions which require
derivatives or other information on the kernel function. Both of these issues limit the
applicability of existing treecodes to high-dimensional problems.

ASKIT is a treecode which overcomes these issues with a novel approximation
method based on randomized linear algebra. Our previous work on ASKIT demon-
strated that the algorithm is efficient and accurate as long as the kernel matrix admits
a hierarchical low-rank decomposition. We have also shown scalable parallel versions
of ASKIT. For example, in [28], we show that ASKIT can scale to two billion points
in 64 dimensions, on 32K cores. This is well beyond the capabilities of previously
existing methods. We also show that the kernel matrix-vector product used in ASKIT
can be used in iterative methods for solving linear systems [26,27].

Contributions. Here, in a companion paper to our software release, we give an
overview of ASKIT, summarizing the different versions presented in previous work in
a coherent whole. We also present some new improvements to the algorithm, and
include a discussion for users of ASKIT. In particular, we provide the following:

e We release an open-source, C+-+ implementation of ASKIT*.
e We provide guidance for practical parameter selection for users of ASKIT (§5).
e We correct an inaccuracy in our previous use of nearest neighbor information.
By partitioning the neighbor information into points used for sampling and
point used for pruning, we improve the quality of our approximation over our
previous implementation of ASKIT §2.3.
e We introduce a new adaptive rank selection criterion and level restriction
algorithm to improve users’ control over the approximation error §2.3.
Overall, these modifications significantly improve over the original algorithm [25] and
make the parameter selection much easier.

Limitations. ASKIT is still under development, both in terms of software and
the algorithm. Here, we summarize a few of the outstanding questions and issues with
our implementation. We discuss some of these in more detail in §5. Our adaptive level
restriction algorithm (§2.3) is currently only implemented for a single MPI process.
The multiple process version is currently under development. Optimal sampling in
terms of both complexity and accuracy is an open problem. Our heuristic of using
nearest neighbors for smooth monotonically-decreasing-with-distance kernels to sam-
ple works very well but we don’t have yet a proof on rigorous error bounds using
this sapling. This makes error control much harder than traditional low-dimensional
N-body methods, if one wants to control the work complexity.

ASKIT approximates off-diagonal blocks. If the whole matrix admits a low-rank
approximation, Nystrom methods are an excellent alternative [27]. As we discuss in
§5, ASKIT can be modified to behave like a Nystrom meth‘od. Currently, this process
requires the user to choose between these methods; in the future, the selection between
these methods will be automated in our library.

Most of the components of ASKIT have been optimized for performance on x86

*Available at http://padas.ices.utexas.edu/libaskit/.
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architectures. However, there are still three main opportunities for speed-ups: (1) the
algebraic skeletonization (far field approximation) is done using a standard pivoted
QR BLAS, which obtains very low performance; (2) we explore no GPU acceleration;
and (3) all calculations are done in double precision.

Another limitation is that for problems in lower dimensions, classical geometric
range-based pruning will be much more memory-scalable than precomputing nearest
neighbor information.

Related work. Previously, we introduced ASKIT in [25] and in parallel in [28].
We also performed a comparison against Nystrom methods in [27] and introduced a
more rigorous theoretical error analysis of the method. In [26], we extended ASKIT
to a fast multipole method and introduced several improvements to our parallel im-
plementation. We show experimental results on our nearest neighbor-based sampling
heuristic in [24]. The current paper summarizes and builds on all of these.

ASKIT is an example of a treecode, a family of methods which approximates the
sum in (1.1) by partitioning it into exact and approximate evaluations. Examples
include the Barnes-Hut algorithm [3] and FMM [11] for the Laplace kernel, the kernel-
independent FMM [40], and Fast Gauss Transforms [12, 14,20, 21,39]. Another line
of work is Nystrom methods. These methods efficiently compute a global, low-rank
factorization of the matrix K. For more discussion on these methods see [25, 28]
and for a comparison with the Nystrom methods see [27]. The main limitation of
Nystrom methods is that they assume that K has (from a practical point of view) a
global low-rank structure. This is often not the case, especially for large data sets.

Outline. In §2, we review ASKIT in some detail. We describe the key features
of the method, its implementation in parallel, and some performance improvements.
We then discuss our new modifications. In §3, we summarize our theoretical error
and complexity bounds for ASKIT. In §4, we give some experimental results on the
latest version of ASKIT. Finally, we provide some guidance for users of ASKIT in §5
and conclude in §6.

Notation. We briefly summarize the notation used in the remainder of the paper
in Table 1.1. Throughout, we refer to a point for which we compute a potential (the
first argument of the kernel function in (1.1)) as a target. The point contributing to
the potential (second argument in (1.1)) is a source.

2. Methods. We now turn to a description of the ASKIT algorithm. We begin
with an outline of treecodes in general, then describe the basic parts of ASKIT. We
then move to the parallel implementation of ASKIT in §2.2 and describe some key
optimizations of the method. We introduce our new modifications of ASKIT in §2.3.

2.1. Treecodes and ASKIT. ASKIT is an example of a treecode — a method
which efficiently approximates kernel summations with O(N log N) work. Having
introduced the two key features of a treecode—the outgoing representation and the
pruning rule—we describe the novel versions of these in ASKIT.

Near-far decomposition. Treecodes decompose the kernel summation (1.1)
into the mear field—interactions which are computed directly—and the far field—
interactions which can be approximated for each target:

(2.1) wi= Yy Kgwi+ Y Ky
jENear(1) j€Far(i)
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Data and Kernel Functions

N number of points
d ambient dimension of the data
h bandwidth of Gaussian kernel
Ty T data points in R?

Matrices and Vectors

w charges or weights on source points

w skeleton weights computed by ASKIT

U potentials of target points

U approximate potentials computed by ASKIT

U skeleton potentials computed in FMM version of ASKIT
K full N x N kernel matrix with entries K(x;, ;)

G an off-diagonal block of K

G a subsampled off-diagonal block

a:(G) ith singular value of matrix G

5:(G) an estimated singular value (2.25)

ASKIT Parameters

number of nearest neighbors per point

number of points per leaf

number of skeleton points

tolerance used in adaptive rank selection

the number of rows sampled in skeletonization

number of distributed processes

minimum depth at which to skeletonize a node (level restriction)

N S8 3 o=

Tree Notation

a node in the tree

points in node «

K nearest neighbor list for point 4
left or right child of node «

D the depth of the tree (log(N/m))
SIBLINGS(a) nodes with the same parent as «
A(a) ancestors of «

sExs
5
S

Table 1.1: A summary of the notation used in the remainder of the text. We also use w(Z) to
indicate the components of vector w determined by an index set Z and we use similar notation for
matrices.

Entries in Far(i) are approximated by an outgoing representation—a low-rank factor-
ization of the contribution of the node. Clearly, both the speed and the accuracy of a
treecode depend on the outgoing representation and the method used to decompose
into near and far fields.

Space-partitioning tree. Treecodes derive their name from a space-partitioning
tree, such as a quadtree, kd-tree, or ball tree. The tree partitions the points hierarchi-
cally. These tree nodes are then used to partition the points in (2.1). For each target
1, we traverse the tree from the root to the leaves. At each node, we apply a pruning
rule to determine if the node can be placed in the set Far(i). If a leaf node cannot be
placed in Far, then it goes in Near.

In our implementation of ASKIT, we use a balanced, binary ball tree. We partition
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(a) Level 3. (b) Level 2. (c) Level 1.

Fig. 2.1: We show the off-diagonal matriz blocks approzimated by the skeletonization step in ASKIT.
We show on-diagonal blocks in red and off-diagonal in green. We highlight an off-diagonal block G(9)
at each level, along with the block corresponding to its sibling (dashed line), which extends above
and below the diagonal. At the leaf level (Fig. 2.1(a)), we compute an approzimate ID by sampling
rows of G®) to obtain skeleton points. Moving up the tree, (Fig. 2.1(b)), we skeletonize G2 by
merging the skeleton points of block G and its sibling, then computing another approzimate ID.
We continue (Fig. 2.1(c)) this process all the way up the tree (See Alg. 2.1).

each node by estimating the farthest pair of points belonging to it. We compute its
centroid (x.), then the farthest point from z. (z;), then the farthest point from x;
(z,). We project all the points onto the line (z;,x,), compute the median of the
projected points, and split them into two equal-sized groups. We recursively split
each node until every leaf contains no more than m points.

Matrix block decomposition. It is instructive to take an alternative view of
the partitioning in (2.1). The partitioning of the data into tree nodes corresponds to
a partitioning of the kernel matrix K into blocks. More concretely, consider an even
split of the points into two groups—i.e. the first split in our tree. This corresponds
to a matrix partitioning

(2.2) K= [ Iél Ii }

We refer to the blocks K and K5 as on-diagonal blocks. K corresponds to the inter-
actions between the points in the left child node and themselves (and likewise for K3).
The off-diagonal blocks correspond to the interactions between the nodes. Further
splits of each group of points correspond to further partitionings of the on-diagonal
blocks K7 and K5 (see Figure 2.1). We can view the outgoing representation of the
source points in some tree node as a low-rank factorization of an off-diagonal matrix
block G. We employ this view in the construction of our outgoing representation.
We now give a concrete description of the two key features of a treecode mentioned
above. First, we describe the novel outgoing representation used in ASKIT. We then
discuss the combinatorial pruning rule used to create the partitioning in (2.1).

2.1.1. Outgoing Representation. The outgoing representation in ASKIT is
based on a linear-algebraic decomposition of the off-diagonal blocks G. We define the
decomposition we use, then discuss our randomized algorithm to compute it efficiently.

Interpolative Decomposition. Consider a node o with ¢ points. This node
corresponds to an off-diagonal block G = K(X \ X,, Xy)—i.e. G is the (N —q) x ¢
block of K with columns corresponding to source points in « and rows corresponding
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to all points not in a. Our task is to form a low-rank decomposition of G so that we
may apply it to vectors of charges efficiently.

The singular value decomposition provides the optimal reconstruction error for
a given rank. However, the SVD constructs a new basis for the column space of G,
which requires O(N — q) storage per vector. Storing this basis for every tree node
would require O(N?) space, so we require a different factorization.

ASKIT uses the interpolative decomposition (ID) [29] as a factorization of G. The
ID is a rank s decomposition

(2.3) G~ GeorP

where G consists of s columns of G and P € R**%. Since the ID represents G in
terms of a subset of its columns, we can store it by simply storing the indices of the
source points corresponding to these columns in O(s) extra storage.

We refer to the columns selected in G, (or, equivalently, the source points cor-
responding to these columns) as the skeleton of a, which we denote S,. We compute
s skeleton weights

(2.4) w(a) = Pw(a)

obtained from the original weights of points in a. We can then approximate the
contribution of node « in Far(4) for some target i as

(2.5) (i) = K(zi, Sa)w ()

in O(s) work and with O(s) storage per node. We refer to the construction of the
skeleton and skeleton weights of a node as skeletonization.

Combining outgoing representations. The method above can be used di-
rectly for a leaf node a. In a treecode, we construct outgoing representations for
internal nodes from the representations of the node’s children. Let Sy(,) and Sy(q)
be the skeletons of the children of node «, each of size s. We form the matrix
G = K(X — Xy, S1(a) U Sr(a)) — i.e. the matrix with columns corresponding to these
skeleton points. We form an ID of this matrix to obtain a new skeleton consisting of
a subset of the children’s skeleton points. We obtain the skeleton weights from the
children using

(2.6) (o) = P[ w(1(e)) } .

Computing the ID. In order to compute an ID such that |G — G P|| is small,
we employ a rank-revealing QR factorization to obtain GII = QR for a permutation
II, an orthonormal matrix @, and upper triangular matrix R. The skeleton S, corre-
sponds to the first s columns of GII, and the matrix P can be computed from R by
solving the system

(2.7) R11P = Ry

where Ri; is the s x s upper-left block of R and Rjs is the s x (¢ — s) upper-right
block. It can be shown [5,15] that

(2.8) |G = GearP|| < V1 + qs(q — $)0s41(G)
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using this method, where o1 is the (s + 1)5* singular value of G.

Random sampling. While the ID can be used as a compact and accurate
outgoing representation, its construction is much too expensive. The QR factorization
of G requires O(Nm?) work for each leaf node. Since there are N/m leaf nodes, this
task is more expensive than simply evaluating the kernel summation directly. Thus,
we require a more efficient approximation to compute the ID.

We draw on the rich literature on randomized matrix approximation [16,23]. We
subsample rows of G to form an ¢ x ¢ matrix G’. This is equivalent to sampling a
subset of the target points. If our sample accurately captures the row space of GG, then
we can use the ID of G’ in place of the ID of the full matrix. In addition to accurately
capturing the row space of G, we must be able to obtain our samples efficiently enough
to form a part of a fast matrix-vector multiplication algorithm.

Importance sampling distributions based on column norms and statistical leverage
scores can be shown to accurately capture the row space [8,9,23]. On the other hand,
these distributions require at least one access of every matrix entry, which necessarily
scales as O(N?). Sampling uniformly at random is cheap, but not effective for all
matrices.

As a heuristic approximation, we employ nearest-neighbor information to form
an importance sampling distribution. When the kernel is a decreasing function of
distance, we expect the nearest neighbors to provide a good approximation of the
rows with largest norm. Additionally, the nearest neighbors can be approximated
without touching each entry of the matrix.

We store the k nearest neighbors of each point. For a node, we collect the ¢
closest points among the nearest neighbors of points in the node. We use these points
as the sampled rows to construct G’. If additional samples are required, we choose
them uniformly at random. See [24] for a more thorough exploration of this sampling
scheme and empirical evidence that it is effective.

Using this subsampled approximation, we can efficiently compute an interpolative
decomposition for each tree node. We summarize this in Algorithm 2.1.

Algorithm 2.1 SKELETONIZE(«)

1: if (@) is not a leaf

2 SKELETONIZE(1(«)); SKELETONIZE(r(a))
3: Xy = Sl(a) @] Sr(a)

4: N, = (Nl(a) UNI(Q)) /Xs

5: Collect the first ¢ points in N, U into Ty,
6: Form K(7,,X,) and compute ID K., P

7: Store skeleton S, and skeleton weights w,,

Nearest neighbors. The nearest neighbors of all points can be computed exactly
or approximately (in high d) using randomized projection methods [1,10,18,37]. We
employ a greedy search using random projection trees [6]. We build a tree and, for
each point z;, we collect k-nearest neighbors found by exhaustive search among the
other points in the leaf node that contains x;. Then we discard the tree (we do not
perform top-down searches) and iterate, keeping the best candidate neighbors found
at each step. For simplicity, in the remainder of our discussion, we consider the nearest
neighbors of each point to be an input to ASKIT. They can be pre-computed by any
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method.

2.1.2. Pruning rule. Having described the method used to approximate off-
diagonal blocks, we now turn to the decomposition used in ASKIT to split nodes into
Near and Far in (2.1). In existing treecodes, nodes are separated into Near(i) and
Far (i) according to distances from the target point x;. For each target, the treecode
traverses the tree, starting from the root. If a node is “far enough” from the target
(according to some algorithm-specific criterion), it is pruned—i.e. placed in Far(z). If
a node cannot be pruned, then the algorithm traverses to its children. Leaves which
cannot be pruned are placed in Near(7).

Pairwise distance bounds tend to become less effective at separating groups of
points as d grows. Due to the concentration of measure effect, the pairwise distances
between points will tend to cluster around a single value. In this case, bounding re-
gions around points will overlap more frequently, making pruning increasingly difficult
and resulting in too many contributions to Near.

Neighbor-based pruning. In [25], we introduced a novel combinatorial pruning
condition based on the nearest-neighbor graph of the input points. Recall the list N;
of nearest neighbors of point ¢ we collected in the skeletonization step. If a node owns
a point x € N;, then this node cannot be pruned for i. This pruning condition does
not depend on any distances between the target and a bounding box or ball, so it
avoids the issues with high dimensions mentioned above.

Constructing interaction lists and evaluation. The explicit, recursive traver-
sal of the tree is not necessary with our combinatorial pruning rule. Instead, using
Morton IDs, we can construct the lists Near and Far for each target. The Morton ID
of a node is a bit string that encodes the path from the root to the node. The i*® bit
of the Morton ID of a node is 1 if the node’s ancestor at level 4 is the right child of
its parent and 0 otherwise. We assign a point the same Morton ID as the leaf which
owns it.

A node’s Morton ID and level are sufficient to uniquely identify it in the tree. We
collect the Morton IDs of the points in N; for each 7. Then, we can construct the near
and far field interaction lists for a target in O(k) time without explicitly traversing
the tree using:

Near(:) = MORTONIDS(N;)

(2.9) Far(i) SIBLINGS(AN;)) \ AN)

where A(X) is the set of all ancestors of nodes in the set X and SIBLINGS(X) is
the set of siblings of nodes in X'. Given these interaction lists, we simply compute the
approximate potential for each target:

(2.10) ai) = Y K@i Xa)wla)+ Y K(xi, Sa)i(a).

a€Near(7) a€cFar(i)

Neighbors for sampling and pruning. We use nearest neighbor information
for both sampling to construct the approximate ID and for partitioning interactions
into Near and Far. We split the neighbor list for each point into two components. We
use the first xpy neighbors of each point for pruning, and the remaining xs, neighbors
for sampling. Throughout, we use k = Kpy + ksa and kpy = K/2.
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More concretely, we split the list A of nearest neighbors of each point 4. into two
lists, N;¥ and NV;¥, each with /2 pointst. The list N;¥ is used for pruning, and has
the k/2 closer neighbors. The list N;? is used for sampling, and has the farther /2
neighbors. Note that each point has itself in its list N;E.

For skeletonization of a leaf node «, we form the list of targets 7, as

(2.11) To = (UNF) \ (LNGT)

We then keep the ¢ closest points in T, (as measured by the distance from the point
to its neighbor in «). These are the points used to form the skeleton.

For internal nodes, we collect the children’s lists 71 () and Tr(,). We also need to
remove points in the pruning list of this node. However, storing the lists AT as we
go up the tree will be prohibitively expensive. Instead, we store these lists only for
the skeleton points. For any node «, we define

(2.12) No = Uies, N

Then, for an internal node, we merge the sample neighbor lists of the children, then
remove any points in /\/llza) or Nooy:

(2.13) To = (Ti(a) U Te(a)) \ (Nllzoz) UNr}fa)) .

As before, we can add additional uniform samples to the target list if needed.

2.2. Efficiently implementing ASKIT. We see that ASKIT consists of two main
steps: the skeletonization step (Algorithm 2.1), in which we construct an approximate
ID for each tree node, and the evaluation step (2.10), in which we compute the
approximate potential. We now discuss some important extensions and improvements
to this basic algorithm which we use in our software.

2.2.1. ASKIT in parallel. We begin by discussing our parallel implementa-
tion of ASKIT [27]. The algorithm consists of four major steps which need to be
parallelized: construction of the space-partitioning tree, skeletonization of each node
(Alg. 2.1), construction of the interaction lists (2.9), and evaluation of the approxi-
mate potentials (2.10). Our parallel implementation of ASKIT uses a hybrid MPI /
OpenMP scheme with p distributed processes and multiple threads per process. We
also introduced several improvements to our original parallel implementation in [26].
These improvements are a part of our software release and the results in this paper.

For the construction of the space-partitioning tree, we refer the reader to [28,38].
For the remainder of our discussion, we point out that our tree construction assigns
a subtree containing N/p points to each process. We refer to this subtree as the
local tree and the portion of the tree above level logp as the distributed tree. As a
part of the tree construction, we ensure that each processor has the Morton IDs and
coordinates of the nearest neighbors of all of its points.

Skeletonization in parallel. In the local tree, the skeletonization of each node
on a level can be done in parallel. We assign the skeletonizations of different nodes to
different OpenMP threads. No communication between processes is required. When
we reach the distributed tree, the skeletonization proceeds as a reduction. Every node

T In the case that x = 1, we put the only neighbor in the list AV;* and sample uniformly.
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collects skeleton points and skeleton weights from its children by communicating with
its sibling process, constructs its skeleton, then passes this information up the tree.
Once we collect the points, the subsampled QR factorization is performed locally.

Interaction lists with a Local Essential Tree. Given the set of target points
assigned to a single MPI process, the local essential tree (LET) is the portion of the
global tree (leaves, internal nodes and skeleton data) that is required to evaluate the
potential at the targets [35].

The construction of our interaction lists using Morton IDs allows us to efficiently
collect the information needed for the LET. Let &), be the set of all points owned by
process p and N, be the set of all nearest neighbors of points in &,. Then, let £ be
the set of all leaves containing points in AV, \ &,. The LET is the set of nodes

(2.14) LET = £ U [Uaez [SIBLINGS(A(a)) \ A()]] .

Since the Morton ID and level of a node uniquely identify it, and since each process
has the Morton IDs of all of the nearest neighbors of its target points, the process can
identify locally the nodes it needs for its LET.

Each node can then obtain the skeletons and coordinates of the nodes in its LET
in two communication phases. First, an all-to-all primitive allows each process to
send its node requests to all other processes. Then, in a second all-to-all, each process
answers these requests with either the point coordinates and charges (for a leaf node),
or skeleton points and skeleton weights (for an approximated node).

Evaluation. Once each process has the contents of its LET, no further commu-
nication is required to compute the approximate potentials. We can compute (2.10)
in an embarrassingly parallel fashion on each process.

2.2.2. ASKIT efficiency improvements. We now discuss some further improve-
ments to ASKIT used in our implementation.

Blocking interaction lists. For more efficient evaluation, we can block the
interaction lists over source nodes. Concretely, for each node «, we form the lists

(2.15) Near(a) = {i : a € Near(i) }.

We form similar lists for far-field interactions. Then, in order to evaluate the poten-
tials, we simply compute the matrix vector products

ﬂ(NNear(a)) += IC(Near(a),XaZw(a)

(2.16) (Far(a)) += K(Far(a),Ss) w(a).

By blocking the interaction lists in this way, the evaluation phase can be carried out
more efficiently. An interaction consists of indices for the source and target points,
weights (or skeleton weights), and indices in the final potential (or skeleton potential).
On an MPI process, the individual interactions can be computed in parallel in any
order. We employ a new kernel summation library in our code to compute these
interactions efficiently [41].

Extending ASKIT to a Fast Multipole Method. Fast Multipole Meth-
ods are similar to treecodes—kernel interactions are partitioned into near and far
sets, which are evaluated directly or approximately with an outgoing representation.
Additionally, they employ an incoming representation. The outgoing representation
compactly summarizes the contribution of a group of sources to the potential at some
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distant point. The incoming representation efficiently approximates the contribution
at a group of targets from distant source points. The combination of these two repre-
sentations allows an FMM to approximate the contribution between a large number
of targets and a large number of sources efficiently. This allows FMM’s to have an
evaluation phase which scales as O(N).

We present the extension of ASKIT to an FMM in detail elsewhere [26]. Here,
we only mention that an interpolative decomposition can be used as an incoming
representation as well’. Let a be a node of target points and 3 a node of source
points, each with an interpolative decomposition. Then, if all points in S belong to
Far(¢) for all points in a, we can compute the approximate interaction as

(2.17) ii(a) = PTK(S4, Sp)Psw(B)

We make use of this observation by updating the interaction lists. We begin by
forming the interaction lists Far(i) for each target ¢ in (2.9). We then merge the lists
from leaves up the tree. Concretely, for a leaf node a, we compute a list

(2.18) FMMFar(o) = Njeq Far(s).
We remove the merged nodes from each target list:
(2.19) Far(i) = Far(i) \ FMMFar(«).

Similarly, we merge common entries for the children of each node and put them in the
list of the parent. This requires a second upward pass of the tree after skeletonization
and the construction of the interaction lists.

In addition to the computations in (2.16), for the evaluation step we now loop
over all nodes 8 € FMMFar(a) and compute

(2.20) W(Sa) += K(Sa, Sp)w(5)

where u are the skeleton potentials for node a. As a final post-processing step, we
then pass down the tree and apply the matrix P to obtain skeleton potentials for
the children of node a:

(2.21) [@(S1(0)), W(Se(a)] += P @(Sa)-
Applying P at the leaf level results in the final potentials:
(2.22) u(a) += PTa(S,).

The complete algorithm is given in Algorithm 2.2.

ASKIT in iterative methods. We mention one more important feature of
ASKIT. Frequently, kernel sums are used inside a loop. For instance, kernel regression
requires solving the system Kx = y. Since we cannot explicitly construct K, let alone
invert it, we use an iterative solver [26,27]. In this case, we need to compute a kernel
sum for a fixed K for many different charge vectors w.

 If the kernel function is symmetric, then we can re-use the same ID for both incoming and
outgoing representations. If it is not, then we compute one ID for the matrix G’ and one for G'T.
For simplicity, we restrict our attention to the symmetric case here.
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Algorithm 2.2 u=ASKIT(X,w,s,{,m)

1: Read or compute the x nearest neighbors of all points

2: Construct tree and compute Morton IDs

3: SKELETONIZE(«) Alg. 2.1
4: Construct interaction lists Near(7) and Far(:) for all 4 (2.9)
5: Merge interaction lists to obtain FMMFar(«) (2.18)
6: Invert and block lists (2.15)
7: Compute interactions in lists (2.16)
8: Apply PT to skeleton potentials (2.21), (2.22)

In ASKIT, the skeletonization, LET construction and exchange, and blocking of
interaction lists do not need to be repeated for a new charge vector. For the skele-
tonization step, we simply store the matrix P in each node. Then, for a new charge
vector, we simply need to compute w(a) = Pw(«). This step is much cheaper than
the QR factorization required for the initial skeletonization. In the LET, we only
need to exchange the updated charges. We record which exchanges were necessary to
obtain the LET. We use this information to perform a single all-to-all communication
to obtain the updated skeleton weights.

Bichromatic kernel summations. So far, we have described ASKIT in the case
that the source and target sets are identical. However, the method can be extended to
the case where they are distinct (the bichromatic case) [26]. This case typically occurs
in a learning setting where we first ¢train a model using a monochromatic evaluation,
then test the model on some new set of targets.

We perform the training exactly as described above. Then, we read in the new
test targets. We compute the nearest neighbors of each testing point in the training
set. We assign each testing point the Morton ID of its nearest neighbor. We can then
compute interaction lists for the test points using (2.9) and update the LET with any
additional nodes needed.

2.3. New features of ASKIT. While the primary purpose of this paper is to
introduce our open-source ASKIT library and provide some guidance for future users,
we also introduce a few improvements to the existing ASKIT algorithm.

Adaptive rank skeletonization. In the original implementation of ASKIT [25],
we chose the skeleton size s as an input parameter. This approach makes controlling
the final error in the approximation extremely difficult. Also, for some data sets and
kernels, some nodes may be easier to compress than others—i.e. they will require
fewer skeleton points to achieve a given accuracy.

In [27], we introduced an adaptive rank selection method. The user specifies
a tolerance 7. Then, when skeletonizing an off-diagonal block G, we estimate the
singular values of G from the QR factorization. We use a relative adaptive rank
criterion to select s by:

(2.23) s=min{i: 0;41(G)/01(G) < 7}.

In our previous work, we estimated the singular values of G using the diagonal ele-
ments of the factor R in the QR factorization [15].

While this method can be effective, consider a case where the off-diagonal block
G makes very little contribution in the far field. In other words, the first singular
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value 01(G) is small. This can occur, for instance, if the kernel is extremely thin or
if G corresponds to an isolated cluster of source points. In this case, we will have
to choose a large approximation rank to satisfy the condition in (2.23). However,
because G makes a small contribution at target points, a smaller rank would result
in little additional error in the final potentials.

We now describe a new alternative method to estimate the singular values of the
off-diagonal block G and use them to choose an approximation rank. We again specify
a rank tolerance parameter 7. When skeletonizing, we construct the subsampled off-
diagonal block G’ as before. If we knew the singular values of the true off-diagonal
block G, then we could control the error by choosing s such that

(2.24) 0si1(G) < T

for every off-diagonal block G.

In practice, we estimate the singular values of G using our subsampled approxima-
tion and the diagonal elements in the upper triangular factor in the QR factorization
computed for skeletonization [15]. In the relative error implementation, we did not
need to scale our estimated singular values to account for missing rows and columns
because the scaling factors in the numerator and denominator in (2.23) will cancel.
In the absolute condition, we must account for these missing rows and columns.

Let ¢ be the total number of source points owned by the node being skeletonized,
and let ¢’ be the number of columns of G — i.e. ¢ = ¢ for a leaf node and ¢’ is the sum
of the children’s skeleton sizes for an internal node. We then form an approximate
estimate of the singular values of G as

(2.25) 5:(G) = Ry (;)é (N;q)é

The scaling factor is derived from the uniform sampling case: if we sample ¢ rows and
g columns uniformly at random and scale the singular values by the factors in (2.25),
then in expectation we will obtain the singular values of G. We discuss the difficulty
in reconciling this approach with our neighbor-based sampling in §4 and §5. We then
choose s by

(2.26) s = argmin{i : 7;(G) < 7}.

In this way, we can account for nodes which make a small contribution to the final
potential while still retaining the flexibility of the adaptive rank algorithm.

Adaptive level restriction. The cost of skeletonizing a single node is O(¢s?) if
both children have skeletons of size s. In the formulation above, s may be as large as
the entire node, leading to extremely high skeletonization costs. In order to govern
this, we introduced a parameter Smax, the largest possible skeleton size, in [27]. In
that work, if the adaptively selected rank exceeded sy ax, then we switched over to
the fixed rank algorithm with rank sp.x. We coupled this approach with a level
restriction parameter L; we do not skeletonize any node that is less than L levels
from the root. This reduces the error by reducing the number of nodes using the fixed
rank skeletonization.

However, the level restriction method is difficult to choose a priori, since a user
will not know how well nodes will skeletonize in advance. Here, we introduce an
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adaptive level restriction method. If the condition in (2.26) chooses a rank larger
than sy .y for some node, then we mark the node as “unprunable”. Any target which
would put the node in its list Far instead interacts with the node’s children.

This introduces a trade-off in terms of the complexity of ASKIT. We bound the
cost of any individual skeletonization by (’)(EsmaXQ). However, the evaluation cost
may grow, since we may not be able to prune some nodes. This approach also has
the advantage of requiring less input from the user without sacrificing accuracy.

3. Theory. Our previous work proved theoretical guarantees on both the ap-
proximation error and complexity of ASKIT. We gather and summarize those results
here.

3.1. Error Bounds. ASKIT incurs two main sources of error: the approxima-
tion of the off-diagonal block G in a basis of s of its columns using the ID and the
approximate construction of the ID by subsampling G to form G'. In [27], we provide
a more thorough accounting for these sources of error. We summarize these results, in
particular a key theorem bounding the error of ASKIT in terms of the singular values
of the off-diagonal blocks. We introduce this bound as a foundation for our discussion
of the control of error in ASKIT in practice.

Notation and preliminaries. For simplicity, we consider a fixed approximation
rank s and we construct interaction lists for K = 1. We will discuss how our bounds
generalize to arbitrary x and adaptively chosen s below. Since we always consider a
point to be its own nearest neighbor, in the x = 1 case, a target interacts directly
with the points in its leaf and interacts with the skeletons of all of the siblings of its
ancestors.

The first split in the tree creates the submatrices given in (2.2). The tree recur-
sively splits collections of points, which corresponds to splitting the on-diagonal blocks
K, and K5 in the same fashion. We also partition the weight vector w in the same
way. We refer to an on-diagonal block at level i as K(?)—i.e. a block corresponding to
the interactions of points in a node with themselves. For the same node, we use G*)
to refer to the interactions between points in the node and all other points. These are
the blocks approximated in ASKIT (in the x = 1 case). We illustrate these blocks in
Fig. 2.1. In our discussion, it is useful to identify a node with its off-diagonal block.

For our discussion, it is useful to consider the structure of the approximate matrix
K computed by ASKIT. In the k = 1 case, the approximation computed by ASKIT is

D
(3.1) Ruw=Y GOw® + KP)y®
=0

where the summation runs over all levels of the tree and the matrices G and K
are interpreted as direct sums over the subblocks corresponding to individual matrix
nodes. Since the term K P w(®P) is exact (corresponding to direct evaluations at the
leaves), we only need to bound the error of each term G,

Error from low-rank approximations. In the best case (SVD), we have that
the error due to a rank s approximation of G is the largest omitted singular value of
G: 0511(G). Our error bounds depend on this quantity throughout. The error for an
ID is bounded by (2.8). In [27], we proved a bound on the error from combining ID’s
in the skeletonization phase, which we incorporate in our bound below.
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Sampling matrix rows. We now turn to the error due to the random sampling
used to approximate the ID. The number of samples needed to achieve high accuracy
with high probability depends on the structure of the matrix. Consider, as an example,
a matrix with r rows, where the first » — 1 rows are parallel and the last row v, is
orthogonal to them. In this case, unless our sample includes v,., we will not accurately
capture the row space of the matrix. In order to be likely to capture v, with a uniform
sampling scheme, we will require O(r) samples.

Leverage scores. The leverage scores of a matrix measure the “importance” of
a row to the overall structure of the row space. Let G be any matrix, and let U be a
matrix of left singular vectors of G. Then, the statistical leverage scores of rows of G
with respect to rank s are defined as:

(3.2) L = UG, 1:s)l].

In our example above, the score ¢, corresponding to row v, will be large, capturing
the importance of this row to the overall space.

As we mentioned in §2, an effective method is to sample from an importance
distribution based on leverage scores. However, in the context of ASKIT, constructing
or approximating these scores is too expensive. Therefore, we consider two simpler
sampling methods: uniform sampling and an importance distribution based on nearest
neighbor information.

Error due to uniform sampling. We begin by considering a uniform sampling
distribution, which is what we use in ASKIT in the k = 1 case. The accuracy of
uniform matrix sampling can be bounded in terms of the leverage scores using a
theorem from [24].

THEOREM 3.1. Let G be n x q. Sample £ rows of G to form G'. Let ( be the
coherence of G with respect to a given rank s, defined as

(3.3) ¢ = max g?’

where the £; are the leverage scores of rows of G.
Let the number of samples satisfy

(3.4) £ > 10qC¢ log (2s/6)

and let II be a projection onto the sampled rows. Then, with probability at least (1 —0)

(3.5) IGU -] < (1+67) 0,:41(G).

Intuitively, a small value of ( means that the action of the matrix is more evenly
distributed among the rows. In this case, a small uniform sample can be successful.
On the other hand, a large value of ( means that there is some part of the row space
of G that is spanned by very few of the rows of G. Therefore, we must sample some
or all of these rows in order to accurately capture the row space.

Note that the quantity ¢ is bounded between s/q and 1. In the case that ( is
small, the number of samples needed is proportional to slog s.

Error from neighbor-based sampling. Proving a bound on the sampling
based on nearest neighbor information is more difficult. Sampling from an importance

15



distribution based on leverage scores can lead to (1 + €) error [22,23]. Distributions
based on Euclidean distances [7] also have theoretical bounds. In [24], we explore
the performance of neighbor-based sampling schemes empirically. Further theoretical
analysis depends on the ability to understand the relationship between the neighbor
distribution and the distribution of leverage scores.

ASKIT error bound. We prove a bound on the overall error of ASKIT in [27].

THEOREM 3.2. [27]. Compute an approzimation with ASKIT using k = 1 and
assume that the number of uniform samples satisfies (3.4). Then:

(3.6) €a < {csamp + cia}log(N/m) max o511 (G)||w||

where the mazimum is taken over all off-diagonal blocks G and with the sampling
error and ID error terms defined as:

1
N — 2
(3.7) Csamp = 2 + <1 +6 7 m>

(3.8) cia = (1+ms(m — s))% + log(N/m) (1 + 283)% .

In this result, the term cgamp is from sampling targets uniformly at random, cig
is the error of an interpolative decomposition, and the factor log(N/m) is from the
accumulation of this error up the levels of the tree.

The term log(N/m)max os41(G)—the decay of the spectrum of the of the off-
diagonal blocks—is key to the approximation error of ASKIT. The term ¢;q is a worst-
case bound; while matrices exist for which (2.8) is not loose, empirical work on kernel
matrices shows that the ID is nearly as accurate as the SVD in practice [24]. The
term csamp is more difficult to understand and is discussed further below.

Effect of increasing k. The number of neighbors « plays two roles with respect
to the error of ASKIT. First, it reduces the term cgamp in the case that the neighbor
distribution captures the leverage score distribution. Second, increasing x means that
we prune fewer nodes and perform more direct evaluations. In terms of (3.6), we
expect the singular values of G to decay more quickly, since G only corresponds to
interactions between points that are more distant.

3.2. Complexity Bounds. We have previously discussed the computational
and storage complexity of ASKIT in [25] and in parallel in [28]. We also discuss
some of the improved versions of the algorithm in [27]. Here, for completeness, we
summarize these results.

Notation. We use t; for the communication latency and t,, for the reciprocal
of the bandwidth. We will assume a hypercube topology for our complexity results,
although nothing in the implementation assumes this. In these results, we assume that
a single kernel evaluation requires O(d) work, which is the only explicit dependence
on the ambient dimension.

We let M = N/m represent the number of leaves. Note that the total number
of nodes in the tree is 2M — 1 = O(M). The tree has depth D = log(N/m). We let
n = N/p be the number of points owned by each distributed process.

Nearest-neighbor search. We assume that the nearest-neighbor list N; for
each point is given. We either precompute these, or read them from storage along
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with the point coordinates. Note that exact nearest-neighbors can be computed in
O(N) time for low-intrinsic dimensional sets [30] and approximation schemes, such as
the one we use, are even faster [1,18,37]. Since ASKIT can use exact or approximate
neighbor information obtained from any source, we do not consider this cost further.

After reading the data and neighbor information, we first construct the tree in
parallel, then we create the skeletonization (outgoing and incoming representations),
then construct and exchange the local essential tree, and finally we evaluate the ap-
proximate potentials.

Tree construction. The parallel tree construction method used in ASKIT is
described in detail in [37,38] and requires

(ts + tw) log® plog N + (t, logp) (d + k) n

time. The storage is O(dkn).

Skeletonization. The skeletonization of a leaf node requires O(d¢m+¥¢m?) work,
where the first term is the cost of forming the ¢ X m matrix G’ and the second is for
the QR factorization. Similarly, the cost for an internal node is O(dls + ¢s?). In
keeping with our use of ASKIT in practice, we assume that £ = O(s) for the remainder
of our discussion.

Nodes up to level logp (from the root) are skeletonized locally with no communi-
cation required. At and above this level, we skeletonize as a reduction. We combine
the skeletons of two siblings with a message of size O(ds), so the total communication
is bounded by O((ts + t)sdlogp). Since we have a total of 2(n/m + logp) nodes
per MPI process, and assuming that m < s (to simplify the expressions), the total
skeletonization time is

(3.9) Ts = (% +1ogp) (ds? + %)

and the storage cost is s?n + (ds + s2) log p.

In the adaptive rank algorithm, we can replace s with sy.x to obtain a worst-case
bound over all computations. However, in the case that many nodes have skeletons
that are much smaller than s;,ay, this bound will be pessimistic.

LET construction. In [25], we showed that the number of nodes in the near
and far interaction lists for any target ¢ are bounded by

|Near(4)|
|Far ()]

O(r)

(3.10) O(+D).

Note that these bounds are also generally pessimistic, in that they assume that all
of the neighbors of the target belong to different nodes. When the data have low
intrinsic dimension, this will generally not be the case.

We can obtain the entries in the interaction lists for a point in O(xD) time using
the Morton IDs of the nearest neighbors. Therefore, the total work for the LET
construction step is

. o (Y 10x ().

Once we have formed these lists (which require no communication), each process
must obtain the skeleton coordinates and charges for every node in Far(i) and the
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coordinates and input charges for every node in Near(i) for every target i. In the
worst case, all of these nodes must be received from another MPI process. Thus, the
worst case of the communication during the LET exchange is

(3.12) tsp + twdk(m + sD)n.

The LET requires additional storage of size dk (m + sD) n.

Once again, these bounds are pessimistic if there is significant overlap between the
interaction lists on a given MPI process. This will occur more often in the case that
the data have low intrinsic dimension. The list blocking step requires no additional
communication and can be done in time proportional to the size of the lists.

Evaluation. Given the LET, we require no additional communication to evaluate
the approximate potentials. The evaluation step itself requires time

(3.13) T = O(dnk(m + sD)).

Complexity of ASKIT-FMM. The FMM version of ASKIT used in this paper re-
quires an additional step to merge lists Far(a) over nodes. This requires O(kDN)
work and is part of the setup phase—i.e. it does not need to be repeated when updat-
ing the charge vector. The total work in the evaluation phase depends on how well
the lists can be merged. In the worst case, no merging occurs, and the complexity of
the evaluation phase is the same as the treecode version. In the other extreme, when
k = 1, we obtain a bound of O(nd(k + s?/m)), since each node only needs to interact
with its sibling. See [26] for more details on this analysis.

Total storage. A key bottleneck in the use of ASKIT is the storage requirement,
particularly as k increases. Here, we state the total storage cost per distributed
process of the algorithm for the user’s reference. We assume that we store the matrix
P in the ID step and that we have a maximum skeleton size s. In this case, the
worst-case memory requirement is bounded by:

N N N N
(3.14) dk+1)—+ (2 + logp) 5% + 2dk— log () (s+m).
p pm p m

The first term is the space required for the point coordinates in the case that all of the
nearest neighbors belong to another process. The second term is the cost of storing
the skeletons (including the matrix P), and the last term is for the coordinates and
charges of each node in the LET. As before, this bound is pessimistic in the case that
there is significant overlap between nearest neighbors.

4. Experiments. We now briefly report selected experimental results on ASKIT.
Also we present convergence results with our new method for partitioning nearest
neighbors between sampling and pruning sets and our new adaptive rank selection
criterion. For a more thorough discussion of the empirical performance ofASKIT, see
our previous papers [25-28|.

Datasets. We use the following data sets in our experiments, chosen to reflect
a range of values of d and varying structures and intrinsic dimensions. See Table 4.1
for details. We generate synthetic data from a uniform distribution in 3 dimensions,
(Uniform 3D) and a uniform distribution in 6 dimensions, embedded in 64 ambient
dimensions (Uniform 64D)%. We also use four datasets derived from learning tasks.

§ We sample the six dimensional data, pad it with zeroes into 64 dimensions, then apply a random
rotation.
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Set N d
UNIFORM 3D 1,000,000 3
UNIFORM 64D 1,000,000 64

COVTYPE 500,000 54
SUSY 4,500,000 18
HIGGS 10,500,000 28
BRAIN 10,584,046 246

Table 4.1: Details of the data sets used in our experiments. We give the number of points N
and dimension d of each set. Note the points in the UNIFORM 64D set are drawn from a 6
dimensional distribution, then embedded in 64 dimensions. The COVTYPE, SUSY, and HIGGS
sets are from [2].

The COVTYPE set is derived from a forest cover classification task. The SUSY
and HIGGS sets are from a classification task in particle physics. These three sets are
from the UCI ML repository [2]. Each data point of the BRAINS set corresponds
to a single pixel of an MRI image of one of 50 brains. The features are based on
correlations with neighboring pixels. This set is from a segmentation task to identify
white from gray matter in brain images. Detailed results on these data will be reported
elsewhere.

Setup. Our experiments use the Maverick cluster at the Texas Advanced Com-
puting Center. The nodes have two Intel Xeon E5-2680 v2 (2.8GHz) CPUs and 256GB
RAM each. All tests were done in double-precision arithmetic. Our implementation is
written in C++ using OpenMP, MPI, the Intel MKL library, and vectorization using
x86 intrinsics.

Error measurements. In keeping with our previous work, we report the relative
error in our matrix approximation:

[Kw— Kuwl

(4.1) €2 =
[ Kwl|

where K is the exact kernel matrix and K is the approximation computed by ASKIT.
Since Kw is prohibitively expensive to compute, we sample ng = 1000 entries of the
vector Kw and compute vector norms on this subsample. All of our experiments are
repeated over 10 independent charge vectors w with independent standard normal
entries. We also use the same sample points in different experiments with the same
data set.

Timing measurements. We report timings for our experiments as well. We
break the timing of ASKIT into four parts. The skeletonization time T is the cost to
sample targets and compute the interpolative decomposition of each tree node. The
LET construction time Tigt is the time to construct the interaction lists for each
target point (or node) and exchange the local essential tree (in parallel experiments).
The list blocking time 77, is the time to block the interaction lists for efficient evalu-
ation. Finally, the time T is the cost to perform the kernel evaluations and obtain
the approximate potentials. Note that this last cost is the only one that needs to be
repeated for new right hand sides (see §2.2).

Kernels. Here, we show results for two kernel functions. The Gaussian is char-
acterized by a bandwidth h, and is given by

l: — =511
(4.2) K(z;,z;) = exp <2hQ] .
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# T €2 TS TLET TL TE %K
1 1E-11 5E-10 439 93 7 4 21%
2 1E-07 5E-05 73 16 1 1 0.6%
3 1E-05 2E-04 29 15 1 1 04%
4 1E-03 1E-03 14 15 1 1 0.3%
5 1E-01 6E-03 10 15 1 1 0.2%

Table 4.2: Uniform 3D data, Gaussian kernel, h = 0.1. All experiments use absolute adaptive
error criteria with adaptive level restriction. We set m = 512 and k = 64, evenly split between
pruning and sampling. The reported columns are: “#” to index the experiments for reference in the

text, “T” for the adaptive error tolerance, “e2” for the estimated approzimation error (4.1), “T's”

for the skeletonization time, “I'Lgr” for the Local Essential Tree construction, “I'r,” for the list
blocking, and “T'g” for the evaluation of approzimate potentials. “%6K ” is the percentage of kernel
evaluations performed in the evaluation step relative to the number required for a direct evaluation.
All timings are in seconds. All experiments are performed on a single compute node.

As h tends to zero, the kernel approaches a delta function. As h increases, then the
kernel takes on a single constant value for all arguments.
We also show some results for the Laplace kernel in three dimensions, given by

(4.3) K@i, a5) = ||z — 5]~

This kernel has a singularity as the distance between the points goes to zero. This
presents a challenge for our nearest-neighbor sampling and pruning schemes, discussed
in §2.3 and below. See [26] for results on more kernel functions.

4.1. Discussion. We now discuss our experimental results. Our intent is simply
to illustrate the effectiveness of our ASKIT library on a range of data sets and kernel
parameters. We show both that ASKIT converges in terms of error and that it can
scale to large data sets.

All of our experiments here use the newest version of ASKIT using the improve-
ments in §2.3: neighbor lists are partitioned into pruning and sampling lists; approx-
imation ranks are selected adaptively using the absolute cutoff criterion; we use the
FMM version of ASKIT; we use the adaptive level restriction; and kernel interactions
are blocked and optimized.

Convergence of error. We begin with some simple convergence and timing
results, along the lines of the studies of ASKIT in our previous work. Our goal here is
to simply illustrate that our new absolute error criterion allows more sensitive error
control than our previous work without significant increase in cost. In Table 4.2, we
show results on a uniform distribution in 3D, and in Table 4.3, for uniform data in 6
dimensions embedded in 64 dimensions. In both cases, we explore a Gaussian kernel
with a single value of h.

In these experiments, we see that the error decreases smoothly with decreasing
7 in Table 4.2, suggesting that our adaptive ID condition can be used to control
the error. In Table 4.3, however, we see that in order to get more than 5 digits
of accuracy for the 64D data, we must perform more than half of the total kernel
interactions (#6). If this much accuracy is desired, it would be preferable to perform
the summation directly.

In the adaptive rank selection algorithm (§2.3) with tolerance 7, and in the event
that our samples satisfy the conditions of Theorem 3.2, the approximation error would
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1E-05 9E-06 1068 395 149 260 56%
1E-03 4E-04 486 67 11 29  6.2%
8§ 1E-01 BE-03 57 30 1 9 1.6%

Table 4.3: Uniform 64D (6 intrinsic) data, Gaussian kernel, h = 0.385. All experiments
use absolute adaptive error criteria with adaptive level restriction. We set m = 512 and k = 64,
evenly split between pruning and sampling. The reported columns are: “#” to index the experiments
for reference in the text, “T” for the adaptive error tolerance, “e2” for the estimated approximation
error (4.1), “T's” for the skeletonization time, “I'pgr” for the Local Essential Tree construction,
“Tr” for the list blocking, and “T'g” for the evaluation of approximate potentials. “%K” is the
percentage of kernel evaluations performed in the evaluation step relative to the number required for
a direct evaluation. All timings are in seconds. All experiments are performed on a single compute
node.

# T €2 Ts Tiger T T %K
6
7

be bounded by
(4.4) |1 Kw — f(w|| < (€samp *+ Cia) log(N/m)7||w]|.

However, our experimental results show that controlling the error in ASKIT is not
always this simple. While we have shown that our nearest-neighbor-based sampling
heuristic is effective empirically, we do not currently have a theoretical guarantee of
the error due to this approach. Additionally, we scale our estimated singular values
using (2.25). While this scaling is correct in expectation for uniformly sampled rows,
it does not currently account for the influence of the neighbor information. Inaccuracy
in the estimation of the singular values can translate into an incorrect selection of the
approximation rank as well. Obtaining tighter control over the approximation error
is a subject of ongoing work and is discussed further in §5.

Dependence on h. In Table 4.4 we show results for ASKIT on the COVTYPE
data set for a range of values of h to briefly highlight the dependence of the method
on the kernel function. These bandwidths are chosen based on our previous work on
the COVTYPE set [27].

At one extreme, when the kernel is extremely thin, nearest neighbor information
is sufficient (#9). As h gets larger, we enter a more difficult regime. Even including
45% of the kernel interactions (# 18) only gets two digits of accuracy for h = 0.35.
As h increases further, we see the far-field interactions compress more easily (# 22).

Both the COVTYPE and UNIFORM results are in line with our previous ex-
perimental work on ASKIT. For example, in [27], we observed that some Gaussian
kernel bandwidths can be difficult to compress. This is due to the lack of a rapidly
decaying spectrum of the off-diagonal blocks. In this case, (3.6) predicts that a large
approximation rank will be necessary to achieve small error. See [24] for a study of
the spectra of these off-diagonal blocks.

Laplace kernel. We also look at the Laplace kernel in Table 4.5. These results
particularly highlight the advantage of our new partitioning of nearest neighbors when
compared with our work in [26]. In that work, using the same neighbors for pruning
and sampling, we achieve e; = 8E-3 using 5% of the total kernel evaluations (see [26],
Table 5, #23). Here, using 4% of the total evaluations, we achieve more than three
orders of magnitude improvement in the error (#27). Furthermore, the results in [26]
required a very large value of L and small value of k to overcome the difficulties
associated with not using the partitioned neighbor list.
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# h T €2 TS TLET TL TE %K
9

0.02 1E-01 3E-11 8 25 0 2 1.6%
10 0.05 1E-07 9E-04 207 41 1 5  5.1%
11 0.05 1E-05 1E-03 101 31 0 4 32%
12 0.05 1E-03 2E-03 24 25 0 2 21%
13 0.05 1E-01 3E-03 8 25 0 2 1.6%
14 0.16 1E-07 b/E-02 532 70 4 19  18%
15 0.16 1E-05 5E-02 505 65 3 17 16%
16 0.16 1E-03 6E-02 275 43 1 7 7.0%
17 0.16 1E-01 8E-02 22 26 0 3 2.7%
18 035 1E-07 3E-02 625 108 8 47  45%
19 0.35 1E-05 9E-02 319 53 2 13 12%
20 035 1E-03 9E-02 74 26 0 4 37%
21 035 1E-01 1E-01 10 26 0 2 22%
22 10.0 1E-07 7E-03 11 25 0 3 23%
23 100 1E-05 2E-02 9 26 0 2 1.9%
24 100 1E-03 1E-02 9 25 0 2 1%
25 10.0 1E-01 3E-02 9 26 0 2 1.6%

Table 4.4: COVTYPE data, Gaussian kernel. All experiments use absolute adaptive error
criteria with adaptive level restriction. We set m = 512 and k = 1024, evenly split between pruning
and sampling. The reported columns are: “F” to index the experiments for reference in the text,
“r7 for the adaptive error tolerance, “e2” for the estimated approzimation error (4.1), “I's” for the
skeletonization time, “T'rpT” for the Local Essential Tree construction, “I't,” for the list blocking,
and “T'rg” for the evaluation of approximate potentials. “%K ” is the percentage of kernel evaluations
performed in the evaluation step relative to the number required for a direct evaluation. All timings
are in seconds. All experiments are performed on a single compute node.

In these results, we also look at two different values of k. We see that for the same
value of 7, K = 512 tends to result in smaller error than k = 2048 (e.g..#26 vs. #30).
This is counter to our intuition that larger  results in smaller error. However, we see
from the number of kernel evaluations that the x = 512 results in larger approximation
rank sizes, which in turn results in the smaller approximation error.

We also point out that ASKIT is both slower and less accurate than specialized
codes for the Laplace kernel. For low-dimensional problems, standard FMM’s are a
better tool. We include these results to demonstrate the generality of ASKIT and as a
point of comparison with existing methods.

Single node timings. In Tables 4.2-4.5, we also see that the skeletonization
and evaluation times increase with decreasing values of 7. This is because smaller
values of 7 result in larger approximation ranks throughout the tree. We see that
the skeletonization time increases more drastically, since it is proportional to s? (3.9),
while the evaluation step is only proportional to s (3.13). For example, if we compare
#17 and #14, we see a factor of 24 increase in the skeletonization time but only a 6x
increase in evaluation due to the larger skeletons. Overall, we see that skeletonization
accounts for most of the evaluation time. However, this cost can be amortized over
many different right hand sides in an iterative method, since the evaluation step is
the only work that needs to be repeated for new charges. Furthermore, as we discuss
in §5, our skeletonization code is currently less optimized than the evaluation code.

ASKIT on large data sets. Finally, we show selected results for larger data
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# T K €2 TS TLET TL TE %K
26 1E-05 512 3E-08 833 207 51 73 11%
27 1E-03 512 5HE-06 402 115 12 27 41%
28 1E-01 512 1E-03 140 47 2 9 1.3%
29 1E-00 512 8E-03 92 30 1 6 0.9%
30 1E-05 2048 B/E-07 403 114 10 25 3.6%
31 1E-03 2048 2E-05 187 90 3 12 1.9%
32 1E-01 2048 1E-03 62 82 1 8 1.2%
33 1E-00 2048 1E-02 31 83 1 7T 1.0%

Table 4.5: Uniform 3D data, Laplace kernel. All experiments use absolute adaptive error
criteria with adaptive level restriction. We set m = 512. The reported columns are: “#” to index the
experiments for reference in the text, “T” for the adaptive error tolerance, “k” for the total number of
nearest neighbors split evenly between pruning and sampling, “e2” for the estimated approximation
error (4.1), “T's” for the skeletonization time, “I'Lgr” for the Local Essential Tree construction,
“TL” for the list blocking, and “T'g” for the evaluation of approximate potentials. “%K” is the
percentage of kernel evaluations performed in the evaluation step relative to the number required for
a direct evaluation. All timings are in seconds. All experiments are performed on a single compute

node.

# h T L €2 TS TLET TL TE %K
34 0.05 1E-05 7 1E-03 981 43 16 34 51%
35 0.06 1E-00 2 5/E-03 17 31 2 4 04%
36 0.15 1E-03 10 2E-02 939 94 132 184  30%
37 0.15 1E-00 7 8E-02 514 46 17 31 4.7%

Table 4.6: SUSY data, Gaussian kernel. All experiments use absolute adaptive error criteria
with fized level restriction. These experiments use p = 8 nodes of Maverick. We set m = 1024
and kK = 1024, evenly split between pruning and sampling. The reported columns are: “#” to index
the experiments for reference in the text, “h” for the kernel bandwidth, “T” for the adaptive error
tolerance, “L” for the level restriction, “e2” for the estimated approximation error (4.1), “T's” for
the skeletonization time, “I'r, gr” for the Local Essential Tree construction, “I'r,” for the list blocking,
and “T'g” for the evaluation of approximate potentials. “Y%K ” is the percentage of kernel evaluations
performed in the evaluation step relative to the number required for a direct evaluation. All timings
are in seconds.

sets using our parallel implementation of ASKIT. In Table 4.6, we show results for
SUSY data. We also show results for the HIGGS and BRAIN sets in Table 4.7 and
Table 4.8 using bandwidths from our previous work [26]. These experiments use a
fixed level restriction L. We choose L to ensure that no nodes have a skeleton larger
than spax = 2048 for the given value of 7.

We see in these experiments that the HIGGS set is extremely difficult for the
bandwidth we have chosen; doing 25% of the kernel interactions still results in nearly
10% error (#38). On the other hand, the BRAIN set compresses more easily (#41).
Note also that for the BRAIN set, the evaluation step takes longer relative to the
skeletonization step (e.g. #40) than for our other data sets. Since this set has much
larger d than the others, the evaluation of the kernel functions is more expensive. The
evaluation step scales linearly with the number of evaluations, while the skeletoniza-
tion is dominated by the cost of the QR factorization.

Scaling of ASKIT. We also explore the scalability of ASKIT with the size of
the input data. More detailed scaling results are in [26,28]. We perform a weak
scaling experiment using the UNIFORM 64D distribution and Gaussian kernel. We
choose the bandwidth h according to a theoretically optimal value for kernel density
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# T L €2 TS TLET TL TE %K
38 1E-03 10 9E-02 110 236 37 259 24%
39 1E-01 8 1E-01 18 196 6 127 11%

Table 4.7: HIGGS data, Gaussian kernel, h = 1.0. All experiments use absolute adaptive
error criteria with fized level restriction. These experiments use p = 32 nodes of Maverick. We
set m = 512 and k = 1024, evenly split between pruning and sampling. The reported columns are:
“H7 to index the experiments for reference in the text, “T” for the adaptive error tolerance, “L” for
the level restriction, “e2” for the estimated approzimation error (4.1), “T's” for the skeletonization
time, “T',p7” for the Local Essential Tree construction, “I'r,” for the list blocking, and “T'g” for the
evaluation of approximate potentials. “%K ” is the percentage of kernel evaluations performed in the
evaluation step relative to the number required for a direct evaluation. All timings are in seconds.

# T L €2 Ts Tigr T Te %K
40 1E-07 10 2E-03 596 58 29 320 5.2%
41 1E-03 8 BJE-03 247 28 3 69  0.9%

Table 4.8: BRAIN data, Gaussian kernel, h = 3.5. All experiments use absolute adaptive
error criteria with fixed level restriction. These experiments use p = 32 nodes of Maverick. We
set m = 512 and k = 1024, evenly split between pruning and sampling. The reported columns are:
“#£” to index the experiments for reference in the text, “T” for the adaptive error tolerance, “L” for
the level restriction, “e2” for the estimated approximation error (4.1), “I's” for the skeletonization
time, “I'r, gr” for the Local Essential Tree construction, “T'r,” for the list blocking, and “T'g” for the
evaluation of approximate potentials. “%K ” is the percentage of kernel evaluations performed in the
evaluation step relative to the number required for a direct evaluation. All timings are in seconds.

estimation for Gaussian distributions of points [32]. We fix the number of points
per core at 50,000, and report timing results in Table 4.9. We show two sets of
experiments. In the first, we fix the approximation rank s = 512. This has the effect
of fixing the amount of work per node in both skeletonization and evaluation. In the
second set, we use the adaptive rank selection method with 7 = 0.1 to fix the overall
matrix approximation error.

The scalings in both sets of experiments are qualitatively similar. The skele-
tonization phase scales linearly up to 320 cores, then increases slightly for 640 cores.
This is in line with the prediction of (3.9), which says this phase will scale linearly
until the log p term becomes too large. The list construction and LET exchange steps
scale worse than linearly; again, (3.11) predicts Nlog N scaling. Since k = 128, we
see slightly worse than linear scaling in the evaluation phase. This corresponds to a
situation between the linear k = 1 case and the same scaling as the treecode version
of the algorithm.

The major difference we see between the two experiments is that the parallel
efficiency seems to be better for the fixed-rank (fixed s) experiments. In the fixed
rank-experiments, each node requires a large skeleton, while nodes low in the tree for
the adaptive rank have small skeletons. The cost of skeletonization in the fixed s set
is therefore dominated by the large number of expensive leaf node skeletonizations.
This work is completely independent on each process, so we expect this step to scale
well. Since the skeletonization is responsible for most of the total runtime in these
experiments, this scaling accounts for the better parallel efficiency. However, these
experiments are still informative, because as we see in experiments with lower error
(e.g9. #6 and #34), skeletonization is often the dominant cost.

5. User’s Guide to ASKIT. We now turn to a practical discussion of the
ASKIT open-source library. ASKIT is available at http://padas.ices.utexas.edu/
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Fixed s Fixed e,
N 1M 4M 16M 32M 1M 4M 16M 32M
#cores 20 80 320 640 20 80 320 640
h 0.31 0.24 0.19 0.17 0.31 0.24 0.19 0.17
) 7TE-02 1E-01 2E-01 3E-01 || 4E-01 4E-01 4E-01 4E-01
Ts 207 207 208 214 15 15 17 19
Ty, 2 2 4 5 1 1 2 3
TieT 13 17 31 40 12 15 21 27
Tg 14 17 21 23 5 6 7 9
Total 235 244 263 281 33 37 47 58
Efficiency 1.00 0.97 0.90 0.84 1.00 0.89 0.70 0.57

Table 4.9: Uniform, 64d (6 intrinsic) data, Gaussian kernel. We report two sets of weak-
scaling results on ASKIT-FMM. In the first set, we use a fized approximation rank s = 512. In the
second, we use the adaptive rank algorithm with T = 0.1 to achieve fized error. We sample 50K
points per compute core. The experiments were run on Maverick with one MPI process per node
and 20 threads per process. We set k = 128 and m = 512. The reported values are: “I's” for the
skeletonization time, “T'rpT” for the Local Essential Tree construction, “I't,” for the list blocking,
and “T'g” for the evaluation of approximate potentials. We also report the observed parallel efficiency
relative to the 20 core (1 MPI rank) case. All timings are in seconds.

libaskit/, along with its dependencies. The documentation in the code contains
more details for users. Here we simply outline the basic concepts.

Estimating nearest neighbors. Our implementation of ASKIT reads neighbor
information for each point from a file. These files can be generated from any source. In
our experiments, we estimate neighbors using the RKDT library, available along with
ASKIT at the link above. This library is a dependency for ASKIT since it contains the
tree construction code, so this is an easy choice for users as well. The memory for the
nearest neighbors can quickly increase, necessitating distributed memory parallelism.

Using ASKIT for a single kernel summation. The ASKIT library comes with a
command line function to compute kernel matrix vector products. The user specifies
the data, neighbor file, and kernel function and parameters. This functionality can
be used to estimate the error and runtime of the method, as in our experiments. In
particular, users may want to do a preliminary run with this approach to verify their
parameter selections before using ASKIT in their applications.

Using ASKIT inside another method. Typically, ASKIT will be used as an
inner loop in another computation. For example, we demonstrate embedding ASKIT
in a kernel regression application in [26,27]. In this case, for a given kernel function,
the skeletonization and list construction steps only need to be performed once. ASKIT
can be provided with a new vector of charges, which it uses to update the skeleton
weights efficiently. Then, the only additional computation required is the evaluation
step. Our implementation of ASKIT generates a static library which can be linked
against other code as desired.

Adding kernel functions. ASKIT currently supports several kernel functions.
However, adding additional functions is straightforward. The ASKIT code is encapsu-
lated in a C++ class which takes a template argument. This argument is a class which
computes kernel functions. In order to extend ASKIT with a new kernel function, a
user only needs to implement this kernel class.

Choice of ASKIT variants. In our previous work (and this paper), we have
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introduced several variants of the ASKIT method. For this release, we recommend that
users use the FMM version of ASKIT §2.2 with the absolute, adaptive skeletonization
rank selection criterion and adaptive level restriction (§2.3). These approaches will
all be enabled as the defaults, with other options available for advanced users.

ASKIT as a Nystrom-like method. ASKIT can also be used in a way that is
similar to a Nystrom method. Our implementation has an option to compress the
on-diagonal blocks as well. With this option, no direct evaluations are performed;
instead, all interactions are approximated with the node’s skeleton. In this case, we
sample points from within the node as well as outside it to construct the skeleton.

By using a small number of splits in the tree (e.g. one or two), ASKIT only parti-
tions the matrix into a few large blocks. Furthermore, we can set x = 1, so that all of
the samples are chosen uniformly. Using these options, together with the skeletoniza-
tion of on-diagonal blocks, we obtain factorizations of the (2 or 4) matrix blocks from
uniform samples. We then evaluate using only these factorizations. This is similar
to a Nystrom method, in that it consists of a (nearly) global low-rank factorization,
chosen by sampling a small matrix uniformly and factoring it.

5.1. Parameter Selection. We now turn to some guidance for users for pa-

rameter selection in ASKIT. The main parameters of interest to a user are:

e r — the number of nearest neighbors per point,

e 7 — the absolute adaptive rank selection tolerance,

e m — the number of points per tree leaf,

® Smax — the maximum possible skeleton size,

e ( — the number of sampled targets for approximate ID construction.
We address each of these parameters briefly, drawing on our theoretical and empirical
results. Overall, the selection of parameters will depend on both the data set and the
difficulty of the kernel function. As our previous work [27] and §4.1 have shown, some
kernel functions are simply difficult to compress. If the number of kernel evaluations
required for a desired accuracy is a large fraction of the total (30% or more), then
there is not a more efficient approach than to evaluate the sum directly. As noted
previously, we recommend that users do a “dry run” with their parameter selection
before using ASKIT in their application.

Neighbors — k. In general, more nearest neighbors result in more accuracy, since
there are more direct evaluations and the sampling for ID construction is typically
more accurate. We recommend that one uses as many neighbors as possible. However,
it should be noted that depending on the kernel and data, it may be possible to obtain
good error with no neighbor information.

The storage requirements increase drastically with the number of neighbors, par-
ticularly for high-dimensional data. As k increases, more neighbors of each point
will belong to another distributed process, as shown in (3.14). This cost drastically
limits the number of neighbors a user will be able to employ. In our experiments, we
generally limit x to at most 2048, even with our large compute nodes.

ID tolerance — 7. The choice of the adaptive skeletonization tolerance is up to
the user—it determines the accuracy that ASKIT will achieve, but comes at a price
of both increased skeletonization and evaluation time. Our experiments give some
representative values of 7 with the resulting approximation accuracy. This parameter
may require some direct experimentation on the part of the user. As we discuss below,
it is a topic of ongoing work to provide a more rigorous connection between the input
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tolerance and the actual error achieved by the method.

In general, reducing 7 will decrease the error, but at an increased cost. As the size
of a node’s skeleton increases, the cost of evaluating an approximate interaction with
the node increases linearly. This cost will be reflected in an increase in the cost of the
evaluation phase (T in our experiments). The cost of skeletonization will increase
more drastically. Since QR factorization for an internal node requires O(fs?) time,
an increase in the skeleton size of a node causes a quadratic increase in the cost of
skeletonizing its parent.

As the total number of kernel evaluations required for a desired accuracy increases,
the additional costs of ASKIT will outweigh the cost of performing a direct evaluation.
If very high accuracy (for a difficult kernel function and data set) is truly needed,
direct evaluation may be preferable.

Leaf size — m. The parameter m appears in both the error and complexity
bounds. In the error, however, it appears as part of the tree depth in the worst
case that errors accumulate up the tree in the combination of IDs. In practice, this
is generally pessimistic. Therefore, we recommend choosing m based on complexity
considerations. It is important for m to be large enough for direct evaluations to be
dense enough to be efficient, but no so large that the number of direct evaluations
is too large. It is also useful to keep m from being too large because we have to
skeletonize each leaf node at a cost of O(¢m?). We find m = 512 to represent a good
compromise value.

Maximum skeleton size — Spax. The maximum skeleton size is also deter-
mined by complexity considerations. In principle, the error does not depend on Sp,ax
because the adaptive rank selection criterion (2.26) holds. In terms of complexity, we
have a tradeoff between the cost of skeletonizing nodes that have rank close to spyax
and the increased cost of evaluation from marking many nodes as “unprunable”’”. How-
ever, the skeletonization cost is only incurred once in an iterative computation, while
the evaluation step occurs in each iteration. In our experiments, we use syax = 2048.

Number of samples — £. The sampling step is the least well understood in
terms of its effect on the error. If the number of samples is too small, then we do not
have a bound on the term cgamp in the error bound (3.7). Additionally, our adaptive
rank selection criterion depends on our estimate of the singular values of G obtained
from G’. If we sample too few rows, then this estimate may be very inaccurate.

In terms of complexity, the cost is straightforward. The skeletonization cost scales
linearly with /, and this term does not appear in the evaluation phase. We use ¢ = 2¢
for a matrix of ¢ columns in our experiments. It is also possible to force ASKIT to take
some additional uniform samples along with those from the nearest neighbor lists.
While this may improve the quality of the samples (at increased cost), we defer a
more detailed analysis of the sampling to future work.

5.2. Outstanding Issues. ASKIT is still under development, both in terms of
software and the algorithm. Here, we summarize a few of the outstanding questions
and issues with our implementation.

Timing of skeletonization phase. In typical use cases of ASKIT, such as in
our experiments, the skeletonization phase is extremely expensive. For each node, we
must perform a pivoted QR factorization of a potentially large matrix. Currently, our
implementation is relatively unoptimized for this part of the algorithm, as opposed
to the evaluation phase. This is an area of ongoing work.
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Sampling. The sampling step is currently the least well understood part of
ASKIT. If the samples accurately capture the row space of the off-diagonal block, then
we have rigorous theoretical guarantees on the error of the method. While we have
guarantees in the case of uniform sampling for bounded coherence (Thm. 3.1), this
does not address the biased, neighbor-based sampling we use in practice or the case
when the coherence is large. A better understanding of this sampling distribution will
lead to a more reliable method for choosing the number of samples ¢, rather than the
heuristic method used currently.

Scaling singular values. A related issue is the scaling of singular values used
in our new adaptive rank selection criterion (2.25). For uniformly chosen samples,
this scaling will provide the correct value of o in expectation. However, when we
use neighbor information, we sample from a distribution that is quite different from
uniform. Understanding how to correctly scale the estimated singular values is crucial
to more rigorous error control in ASKIT.

6. Conclusion. In this paper, we presented our open-source implementation of
ASKIT, the Approximate Skeletonization Kernel Independent Treecode. In our previ-
ous work, we have show that ASKIT is scalable, efficient, and accurate. Additionally,
there are important kernel summation problems, such as arise in supervised learning
applications, where existing methods fail to provide good accuracy [27], but ASKIT is
more successful. We have also demonstrated that ASKIT can be successfully embedded
in kernel-based supervised learning methods [26,27].

Here, we summarized the ASKIT method and its complexity and error bounds.
We also illustrated the performance of the method on some representative kernel
summation applications and provided guidance to users of our software.

Our ongoing development of ASKIT will focus on a better understanding of the
quality of sampling used to construct the approximate interpolative decomposition in
the skeletonization step. In particular, we are exploring a better theoretical under-
standing of the neighbor-based sampling method used in ASKIT. This will in turn lead
to more reliable error control from the user’s standpoint, and a more robust way to
choose the number of samples required in skeletonization.
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